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Abstract

I estimate a term structure model of Treasury yields in which traders’ informa-

tion about macroeconomic conditions is dispersed. Bond yields and inflation forecasts

identify properties of traders’ information. I find that prices are moderately infor-

mative about economic fundamentals, but more informative about policy and others’

beliefs. Nevertheless, beliefs about the macroeconomy are estimated to be quite het-

erogeneous. Over the sample period, dispersed beliefs directly added an average of 60

basis points to ten year yields, mostly attribute to disagreement about the Federal Re-

serve’s inflation target. Accounting for learning and belief heterogeneity dramatically

reduces the magnitude and volatility of risk premia relative to estimates that assume

full information.
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1 Introduction

Surveys of professional forecasters and market participants suggest there is generally non-

trivial disagreement about current and future macroeconomic variables and the evolution of

asset prices. How does disagreement about the macroeconomy affect the price of long-term

assets? And what can the dynamics of asset prices reveal about beliefs and disagreement?

Understanding belief formation in the bond market is central for both formulating realistic

models of the term structure and for constructing robust models of the links between real

and financial variables central to policy making. Moreover, understanding financial market

participants’ belief formation can aid the assessment of structural macroeconomic models

with dispersed beliefs.

To answer these questions, I estimate an affine term structure model (ATSM) of Treasury

yields, where short rates and macroeconomic variables are described by a structural vector

autoregression. I relax the usual assumption that agents share a common information set.

Instead, I model traders’ information as dispersed : atomistic bond traders optimally combine

noisy, idiosyncratic signals with asset prices to form expectations. Because traders care about

other traders’ beliefs, they must form expectations of fundamentals, as well as expectations

about others’ expectations, and about others’ expectations of others’ expectations, and so

on. Given this “forecasting the forecasts of others” problem, the model solution is a fixed

point between the evolution of agents’ beliefs and the prices that inform those beliefs.

The dispersed information affine term structure model builds on earlier work by Baril-

las and Nimark (2015). They assume yields are driven by latent factors in the yield curve

and identify expectations using interest rate forecasts. By contrast, I explicitly model the

relationship between short rates, macroeconomic variables, financial risk, and monetary pol-

icy. I generalize the structural VAR of Ireland (2015) to incorporate dispersed information.

The central bank is assumed to select a time varying inflation target, and set short rates
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according to a Taylor rule. This rule responds to the output gap, deviations in inflation from

the target, and financial risk. Shocks to the macroeconomic factors affecting short rates are

identified using structural assumptions. Changes in market prices of risk are governed by

fluctuations in a single risk variable, consistent with the results of both Cochrane and Pi-

azzesi (2005) and Bauer (2016). Shocks to this variable are correlated with macroeconomic

shocks, and the risk variable affects macroeconomic dynamics. Hence, the model allows for

an interrelationship between the macroeconomy and financial markets. Traders’ information

is identified using both yields (which depend on traders’ macroeconomic inference problem)

and on the distribution of inflation forecasts (which directly depends on signal noise). I

estimate the model with data from 1971 to 2007 using full information Bayesian methods.

The estimation allows me to quantify the informativeness of different public and private

signals for bond traders, and the relative importance of differences in beliefs about particular

macroeconomic variables for yields. To my knowledge, these results are new to the litera-

ture. My estimates imply roughly half of what bond traders know about macroeconomic

factors (deviations of inflation from the Federal Reserve’s target and the output gap) comes

from observing asset prices, rather than private signals. Asset prices are more informative

about risks related to the central bank’s unobserved inflation target, and are the source of

nearly everything traders know about the others’ beliefs. The short rate, combined with

agents’ idiosyncratic information, contains nearly all the information agents have about fun-

damentals and others’ beliefs. The importance of the policy rate in expectations formation

is consistent with earlier structural and reduced form estimates of a “signaling” channel of

policy (for example, Melosi (2017), Tang (2013)).

Using the estimated parameters, I decompose the yield curve. Like in a typical ATSM, I

identify a component of bond prices due to expected short rates (the expectations hypothesis

component) and compensation for risk. Compensation for risk can be separated into two

components: a portion unrelated to belief heterogeneity (the classical risk premium) and a
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wedge in prices due to dispersed information (the higher order wedge). This wedge comes

from the fact that agents’ expectations of others’ expectations (“higher order” expectations)

differ from average expectations about fundamentals, and hence prices differ from those that

would obtain if traders counterfactually held common beliefs.

Once we account for imperfect, dispersed information, classical risk premia are estimated

to be quite small and nearly constant, in sharp contrast to their full information counterparts.

Instead, the model attributes the vast majority of movement in long-term yields to the

expectations hypothesis component. Average short rate expectations adjust more slowly

than they would if traders had full information. This is due to the fact that agents’ optimal

signal extraction problem attributes some changes in fundamentals to noise, and some portion

of transitory shocks to persistent changes in the inflation target. The higher order wedge,

on average, contributed 60 basis points to ten year yields over the sample period. Because

the risks in the model are macroeconomic, this wedge can itself be meaningfully decomposed

into macroeconomic components. The majority of time variation in the wedge for long-term

debt is attributable to changes in higher-order beliefs about monetary policy, particularly,

policymakers’ long-run inflation target. The decomposition suggests much of the excess

sensitivity of long term yields to short-term macroeconomic news (Gurkaynak et al. (2005))

is attributed by the model to violations of the auxiliary assumption of full information.

My results are particularly related to the branch of the macro-finance literature that

relates long maturity bond price movements to changes in the monetary policy framework.

Gurkaynak et al. (2005) suggest incorporating learning about a long-run inflation target can

help macro-finance models explain the effect of transitory shocks on long-term bonds. This

paper extends this idea to the entire term structure. Moreover, I allow for pervasive infor-

mation frictions about macroeconomic variables. My results complement those of Wright

(2011) who links declines in term premia to falling inflation uncertainty due to changes in

the conduct of monetary policy. It also complements Doh (2012), who estimates a DSGE
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model where agents have a noisy signal of trend inflation. He interprets this noise as imper-

fect credibility of the inflation target. Like these papers, my paper links changes in long-run

policy targets to declines in measured risk premia. Unlike these papers, I incorporate dis-

persed information, quantify signal informativeness, and jointly estimate the dynamics of

macroeconomic variables, beliefs and bond prices.

My finding of small risk premia and persistent short rate expectations stands in contrast

to the literature that explains yields under full information rational expectations. My results

add to growing evidence that accounting for information frictions tends to make time varying

risk premia less important for explaining yields. Critically, the slow adjustment of rate

expectations holds even with optimal Bayesian learning where agents have model consistent

beliefs and a large number of signals. This stands in contrast to others (e.g. Dewachter

and Lyrio (2008)) who assume traders’ forecasts are based on a model-inconsistent prior.

Moreover, my structural results are consistent with the more agnostic approach of Piazzesi

et al. (2013) who construct subjective beliefs without modeling inference. Unlike them, I am

able to quantify the information content of different signals.

The findings of this paper should be of interest to researchers working with more dynamic

general equilibrium or financial models featuring information frictions. The term structure

model makes relatively modest structural and functional form assumptions. Unlike many

exogenous information models, I do not restrict agents from learning from prices.1 The

ATSM is consistent with the pricing implications of many equilibrium models: Barillas

and Nimark (2015) show the dispersed-information ATSM nests an equilibrium model with

wealth-maximizing traders, and a number of authors have also embedded ATSM in DSGE

models (for example Jermann (1998), Wu (2001), Doh (2012)). The estimated results point

to prices as an important source of information for agents making investment decisions. This

1This is in line with the “market consistent information” assumption advocated by Graham and Wright
(2010).
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feature of prices has a long intellectual history but its empirical implications have not been

explored as much in the literature on macroeconomic models with dispersed information.

Other related literature A number of authors have estimated models combining struc-

tural macroeconomic models with a no-arbitrage finance model. Most of these models assume

agents have full information rational expectations. Ang et al. (2007) estimate Taylor rules in

such a setting. Rudebusch and Wu (2008) link yields to a dynamic New Keynesian model.

Unlike these papers, I allow for macroeconomic disagreement.

My emphasis on learning from prices means that this paper is closely related to the

noisy rational expectations literature, following Grossman and Stiglitz (1980). For example,

Hassan and Mertens (2014) embed a Hellwig (1980) noisy rational expectations model in a

DSGE model to study the equity premium. My model is less structural than these models

to facilitate estimation while retaining a complicated inference problem with many assets

and fundamentals.2

This paper falls primarily into the recent literature on deviations from full information

rational expectations in asset pricing. Much of this literature retains the assumption of com-

mon information or assumes agents are not Bayesian learners. Apart from earlier mentioned

papers, Piazzesi and Schneider (2007) examine how different assumptions about information

affect risk premia in a representative investor setting. Collin-Dufresne et al. (2016) examine

how Bayesian learning about parameters related to long-run risks, rare disasters, and model

uncertainty can help a general equilibrium model generate realistic risk premia.

2A related, but distinct literature associated with Harrison and Kreps (1978) focuses on agents who “agree
to disagree” about fundamentals. Unlike the papers in this literature, I assume any differences in agents’
beliefs are driven by differences in observed signals. In this way, the model in this paper is consistent with
the “Harsanyi doctrine” (Harsanyi (1968)); agents have full information about the structure of the model
and its parameters, and form expectations optimally. Only differences in information gives rise to differences
in belief. Moreover, the dispersed information setup avoids the critique of Aumann (1976), who points out
that two agents with common priors whose posteriors are common knowledge cannot “agree to disagree.”
Here, posterior beliefs of particular agents about the state will not be common knowledge, and thus need
not be the same despite a common prior. Posterior beliefs about prices will be common knowledge because
they are commonly observed.
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The asset pricing literature that allows for differences in belief tends to abstract from

higher order beliefs, the macroeconomy, or both. Giacoletti et al. (2015) also develop an

arbitrage-free term structure model with belief dispersion but explicitly ignore the “forecast-

ing the forecasts of others” problem. Colacito et al. (2016) develop an equity pricing model

that includes variance and skewness of professional forecasts, which they treat as exogenous.

Makarov and Rytchkov (2012) show the state space of a dynamic asset pricing model with

dispersed information can be infinite-dimensional, and that information asymmetries affect

the time series properties of returns. Kasa et al. (2014) solve a present value model with

higher-order expectations in the frequency domain.

Finally, this paper is related to the literature that explains the beliefs implied by forecast

surveys. Examples include Patton and Timmerman (2010), Andrade et al. (2014) and Crump

et al. (2016). Like these papers, I use the cross-section of forecasts at different horizons to

help identify agents’ beliefs. However, I endogenize both forecasts and bond prices. Because

asset prices are driven by expectations about the future, they are informative about the

beliefs of market participants above and beyond what might be captured in surveys.

Outline of the remainder of the paper The next section 2 presents reduced form

evidence of information frictions in financial forecasts. In section 3 I outline the asset pricing

side of the model, the macroeconomic VAR. Details of the solution and estimation strategy

are in sections 3 and 4. I then discuss the parameter estimates and impulse responses

(section 5), the information content of signals (section 6), and the model’s interpretation of

the sources of yield fluctuations (section 7) before concluding.
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Figure 1: Distribution of SPF forecasts of current-quarter average rate on 3-month Treasury
bill.

2 Dispersed Information: Evidence from Forecasts

A number of papers (e.g. Mankiw et al. (2004), Coibion and Gorodnichenko (2012, 2015))

have shown evidence of macroeconomic information frictions using forecast data. With

the exception of Coibion and Gorodnichenko (2015), most papers have focused on inflation

expectations In this section, I briefly discuss some evidence for the presence of dispersed

information about the evolution of Treasury bond prices in particular.

I take data on forecasts from the Survey of Professional Forecasters (SPF). The SPF

is a quarterly survey originally conducted by the American Statistical Association and the

NBER before being taken over by the Federal Reserve Bank of Philadelphia in 1990. The

survey is generally sent out after after the initial release of the National Income and Product

Accounts to a panel of forecasters in the financial services industry, non-financial private

sector, and academia.
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The SPF began to survey its panel about 3-month Treasury bill rates in 1981. The 5th

through 95th percentiles of the current-quarter forecasts are shown in figure 1. Despite the

fact that the rate for a Treasury bill in the secondary market is observable freely in real time

to survey participants, there is still a fair amount of disagreement among forecasters within

the current quarter - that is to say, the forecasters surveyed in the SPF disagree about what

the average yield of Treasury bills will be over the course of the next two months. The

interquartile range of forecasts, even including the zero lower bound period where Treasury

bill rates were also effectively zero, is still nearly 20 basis points, with the overall range of

forecasts often in the neighborhood of 100-200 basis points. To place these ranges in context,

the average yield on 3-month Treasuries was about 436 basis points between 1981-2015. From

2008-2015, the average was 24 basis points. The distribution of one-quarter ahead forecasts,

shown in appendix A, are similar.

To more formally test for information frictions, appendix A presents results from applying

the empirical strategy of Coibion and Gorodnichenko (2015) to forecasts of bond yields in

the SPF.3 The results in the appendix suggest there is a positive, significant relationship

between average forecast errors and average forecast revisions. This is inconsistent with full

information rational expectations, or with common, imperfect information. However, it is

consistent with a world where agents have dispersed information and thus base forecasts off

of different information sets.

Although the SPF forecasts for interest rates are suggestive, there may be two concerns

about the regression results. First, it may be that the true beliefs of bond traders are distinct

from the beliefs of the survey participants. Hence, in the structural estimation, the beliefs

of agents are also identified using both asset prices and forecasts themselves. Second, survey

participants may have a different idea in mind of what the relevant bond price to forecast is,

3Coibion and Gorodnichenko (2015) consider Treasury bill forecasts as part of their pooled regressions in
a robustness test, but do not explicitly test for information frictions using financial asset forecasts alone.
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or may not forecast that variable, which lowers the number of sample responses. Hence, the

estimation does not make use of interest rate forecasts, but rather uses inflation forecasts

which are regarded as being quite accurate (Faust and Wright (2013)).

3 The dispersed information model and structural VAR

In this section, I outline the model of asset prices and macroeconomic dynamics used to

assess the effect of macroeconomic disagreement on prices. The asset pricing intuition and

derivation in the next subsection closely follows that of Barillas and Nimark (2015); some

additional details are found in appendix B. After outlining the asset pricing model, I discuss

the structural VAR.

3.1 The term structure model with heterogeneous information

Intuition: the fundamental asset pricing relationship Index bond traders by j ∈

[0, 1]. Denote Ej
t xt = E[xt|Ωj

t ] as the expectation conditional on j’s information set at time

t (Ωj
t). Call Ωt the “full information” information set (i.e., the history of the realizations of

all variables up to time t).

Under full information, the basic bond pricing equation is

P n
t = Et[Mt+1P

n−1
t+1 ]

Standard results in asset pricing theory give that the nominal stochastic discount factor

Mt+1 exists and is positive if the law of one price holds and in the absence of arbitrage

(e.g. Cochrane (2005)). If we relax the common information assumption, instead assuming

there are a continuum of agents j ∈ (0, 1) with heterogeneous information sets, the pricing

relationship for each agent j is:
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P n
t = Ej

t

[
M j

t+1P
n−1
t+1

]
(1)

Both information sets (Ωj
t) and stochastic discount factors (M j

t+1) are j-specific. Centralized

trading implies it is common knowledge that all agents face the same prices today and

will face the same price tomorrow; because traders are atomistic, they take prices as given.

However, allowing information sets and forecasts of future prices to differ across agents, while

assuming today’s price is common knowledge, implies equation (1) can hold with equality

only if stochastic discount factors also differ.

To decide their willingness to pay for a bond, agents must form expectations of future

prices. Because future buyers face the same problem, the decision to purchase a bond today

depends on a conjecture about others’ (future) beliefs - the Townsend (1983) “forecasting the

forecasts of others” problem. More specifically, dispersion of information implies asset prices

potentially depend on higher order expectations - expectations of expectations.4 Assuming

common knowledge of the pricing equation, joint lognormality of prices and stochastic dis-

count factors, and constant conditional variances, one can show (appendix B) the log price

of the bond takes the following form:

pnt =

∫
Ej
t [m

j
t+1]dj

+

∫
Ej
t

[(∫
Ek
t+1[mk

t+2]dk +

∫
Ek
t+1[pn−2

t+2 ]dk

)]
dj

+
1

2
Var(mj

t+1 + pn−1
t+1 ) +

1

2
Var(mk

t+2 + pn−2
t+2 )

The price of a bond in period t is a function of the average expected stochastic discount

factor in t + 1 plus the average expectation of the average SDF and price at t + 2, plus

variances. Repeatedly recursive substitution allows us to write prices today as a function

of average higher order expectations about future SDFs and variance terms.5 The model

4The role of higher order beliefs in asset pricing is discussed by Allen et al. (2006), Bacchetta and
Van Wincoop (2008), and Makarov and Rytchkov (2012).

5Barillas and Nimark (2015) derive more implications of this result, such as the fact that the portion
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outlined below is consistent with the assumptions made here, but puts additional structure

on the stochastic discount factor; doing so makes it easier to characterize how agents form

higher order expectations and how those expectations affect bond prices.

Short rates and higher order expectations. Call xt be a vector of exogenous factors

- “fundamentals” - and conjecture that the one-period risk free rate rt is

rt = δ0 + δ′xxt (2)

Assume there are d elements in xt. Fundamentals follow a VAR(1):

xt+1 = µP + F Pxt + Cεt+1 (3)

where εt+1 ∼ N(0, I).

Each period, agents observe private signals which are a linear combination of xt and an

idiosyncratic noise component:

xjt = Sxt +Qηjt (4)

where ηjt ∼ N(0, I) is assumed to be independent across agents. For tractability, and in

keeping with most of the dispersed information literature, I assume signal precision is the

same across all agents, fixed at all times, and common knowledge.

By the no-arbitrage condition (equation (1)), bond prices are related to stochastic dis-

count factors, which themselves are assumed to be a function of fundamentals (xt). Future

stochastic discount factors will be a function of (future) fundamentals. Combined with

the fact that bond prices today are functions of higher order expectations about stochastic

discount factors, the relevant state vector will be the hierarchy of average higher order expec-

tations about fundamentals (Nimark (2007)). 6 pth order average expectations are defined

of individuals’ expected excess returns due to differences in belief from the cross-sectional average must be
orthogonal to public information.

6Because of the endogenous price signals and the fact that there are more shocks than signals, there is
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recursively as

x
(p)
t ≡

∫
E
[
x

(p−1)
t |Ωj

t

]
dj

and the hierarchy of average order expectations is collected in the vector Xt:

Xt ≡



xt
x1
t
...

x
(p)
t
...

x
(k̄)
t


where k̄ is the maximum level of higher order expectation considered.

Conjecture the log bond price is

pnt = An +B′nXt + νnt (5)

where νnt is a maturity-specific shock, i.i.d. across time and maturities.7 Further conjecture

that Xt follows a VAR(1)

Xt+1 = µX + FXt + Cut+1 (6)

where ut+1 contains all aggregate shocks - the shocks to fundamentals εt and the vector of

price shocks νt.

(Log) yields at time t of a zero coupon bond maturing in n periods are defined as − 1
n
pnt

not a closed-form solution for the dispersed information model in general (Huo and Takayama (2014)). In
this paper, I use the solution method proposed in Nimark (2007), which solves the model approximately by
truncating the state space in terms of orders of beliefs. Huo and Takayama (2014) propose solving this type
of model in the frequency domain but also show that in general their method requires approximation when
there are endogenous signals. Huo and Pedroni (2017) suggest time-domain methods are faster when the
solution method involves numerically finding a fixed point. They find an exact solution for beauty context
models with dispersed information and endogenous signals, but their technique is not applicable outside of
that context. For this application I set k̄ = 15. The majority of the weight in bond prices is on the first few
orders of expectation; raising the order increases the computational burden substantially without improving
the fit of the model.

7The role of maturity-specific shocks is to allow for prices to not be fully revealing. As σν → 0, prices
become an invertible function of the state and are hence revealing of aggregate information.
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where pnt is the log price of the bond. Assume bonds up to a finite maturity n̄ are traded.8

Collect yields in a vector yt:

yt ≡
[
−1

2
p2
t · · · − 1

n
pnt · · · − 1

n̄
pn̄t
]

Assume agents’ information sets Ωj
t include the history of their private signals xjt , the

short rate rt and a vector of bond yields out to maturity n̄:

Ωj
t =

{
xjt , rt, yt,Ω

j
t−1

}
(7)

Having conjectured an affine form for bond prices and exogenous information, the signals

that agents observe will be an affine function of the state. The filtering problem of an

atomistic agent j has the following state-space representation:

Xt+1 = µX + FXt + Cut+1xjtrt
yt


︸ ︷︷ ︸
zjt

= µz +DXt +R

[
ut
ηjt

]
(8)

I assume agents use the Kalman filter to form estimates of the state Xt, which amounts to

assuming that agents use Bayes’ rule to update their predictions (Harvey (1989)). I also

assume agents have observed an infinitely long history of signals, so they use the steady

state Kalman filter to make their predictions. This standard assumption avoids the need

to keep track of individual signal histories. The matrices F , C determine how higher order

expectations evolve, which depends on the individual filtering problem of traders and the

equilibrium expressions for prices. Prices themselves depend on the evolution of (higher

order) expectations. Hence, we first take the bond price equations as given to derive the law

of motion, and then show the law of motion is consistent with our conjecture for prices.

8Hilscher et al. (2014) document that the vast majority of Treasury debt currently held by the public has
maturity of less than ten years. In the application, I set n̄ = 40, i.e., 10 years is the maximum traded by
agents or used to form forecasts.

13



The details of the bond trader’s Kalman filtering problem are in appendix B.2. Ag-

gregating across traders implies a fixed point expression for F and C (appendix equation

(31)).

SDFs and bond prices To derive an expression for prices, I need to explicitly model the

stochastic discount factor of bond traders. As is common in affine term structure models,

I assume stochastic discount factors are essentially affine (Duffee (2002)). The log SDF is

assumed to take the form:

mj
t+1 = −rt −

1

2
Λj′
t ΣaΛ

j
t − Λj′

t a
j
t+1 (9)

In the above expression, Λj′
t are (time-varying) market prices of risks to holding bonds, and

ajt+1 is the vector of one-period-ahead bond price forecast errors, which have unconditional

covariance matrix Σa.

ajt+1 ≡

 p
1
t+1 − E

j
t [p

1
t+1]

...

pn̄−1
t+1 − E

j
t [p

n̄−1
t+1 ]

 (10)

These errors occur because of shocks that were unanticipated by agents. Hence, the vector

of forecast errors span the risks that agents must be compensated for.

Assume prices of risk Λj
t are an affine function of Xj

t and the vector of maturity shocks:

Λj
t = Λ0 + ΛxX

j
t + ΛνE[νt|Ωj

t ] (11)

where Xj
t is are trader j’s expectations (from 0 to k̄) of the latent factors

Xj
t ≡


xjt

Ej
t [xt|Ω

j
t ]

...

Ej
t [x

(k̄)
t |Ω

j
t ]

 (12)

As mentioned above, the prices of risk represent additional compensation required for traders
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to be willing to hold an additional unit of each type of risk. If Λx and Λv were zero matrices,

risk premia would be constant. If Λj
t = 0, agents would be risk-neutral.

Given the conjectured bond price equation (5): Appendix B shows how to arrive at the

following recursive representation of bond prices:

An+1 = −δ0 + An +BnµX +
1

2
e′nΣaen − e′nΣaΛ0 (13)

B′n+1 = −δX +B′nFH − e′nΣaΛ̂x (14)

A1 = −δ0

B1 = −δ′X

The price of a one-period bond is p1
t = −δ0 + [δx,0]Xt = −rt. H is a matrix that selects

only higher order expectations terms.9 e′n is a selection vector that has 1 in the nth position

and zeros elsewhere. Λ̂X is a normalization of ΛX .10

The state-space representation of prices enables a tractable decomposition of bond yields

into average interest rate expectations over the life of the bond, a component driven by

higher-order beliefs (the higher order wedge) and compensation for risk unrelated to higher

order beliefs (the classical risk premium). Appendix B.6 contains details of the decomposi-

tion.

9More specifically, H is a matrix operator that replaces nth order expectations with n + 1-th order
expectations and annihilates any orders of expectation greater than k̄. This is equivalent to writing prices
in terms of a (hypothetical) agent whose SDF is equal to the average.

10For comparison, under full information with no maturity-specific shocks, Equations (13) and (14) are
replaced by

An+1 = −δ0 +An +BnµX −Bnλ0C +
1

2
B′nCC

′Bn (15)

Bn+1 = −δx +BnF
P −BnCλx (16)
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3.2 The macroeconomic environment and prices of risk

This section outlines the evolution of the factors xt that are sources of priced risk in the

empirical model. The parameters of the VAR for the factor dynamics are restricted to allow

for structural interpretations of the shocks, ensure the model is identified, and to constrain

the estimation to economically relevant areas of the parameter space. The assumptions I

make are similar to those of Ireland (2015).

3.2.1 Macroeconomic dynamics

Assume short term rates are managed by a central bank that sets an exogenous, time varying,

long run inflation target τt and then picks a short rate rt to manage an interest rate gap

grt = rt− τt. Define the deviation of inflation from its long run target gπt = πt− τt. Then the

evolution of the interest rate “gap” takes the form of a Taylor-type reaction function:

grt − gr = φr(g
r
t−1 − gr) + (1− φr) (φπg

π
t + φy(g

y
t − gy) + φvvt) + σrεrt (17)

In this expression, gyt is the output gap.The latent financial risk factor vt shifts prices of

risk Λj
t in a manner specified below. I will assume that all time variation in prices of risk

comes through movement in this factor. This is consistent with the empirical results in

Cochrane and Piazzesi (2008), Dewachter et al. (2014), and Bauer (2016) who all find that

a single factor is responsible for nearly all time variation in bond risk premia.11 Including

vt in the Taylor rule is a simple way to incorporate contemporaneous feedback between

financial conditions and the central banks’ policy stance. I impose prior restrictions on these

parameters. First, I assume that φv is non-negative.12 Second, I assume φr falls between

11 Cochrane and Piazzesi (2008) show that a single “tent shaped” factor extracted from the yield curve
explains nearly all time variation in term premia. Dewachter et al. (2014)’s risk factor is identified by a
similar assumption to that of Ireland (2015) and is highly correlated with the Cochrane-Piazzesi factor.
Bauer (2016) use Bayesian methods to estimate a Gaussian term structure model and finds evidence for
strong zero restrictions which imply only changes in the “slope” factor affect term premia.

12 While in principle unnecessary for identification, this restriction is consistent with the idea that the
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zero and 1. Finally, I assume φπ and φy are both positive.

The long-run inflation target is assumed to follow an AR(1) process:

τt = (1− ρττ )τ + ρτττt−1 + στετt (18)

with ρττ ∈ (0, 1).13

Collecting the factors in xt:

xt =


grt
gπt
gyt
τt
vt

 (19)

they can be written in matrix form:

P0xt = µx + P1xt−1 + Σ0εt (20)

Exact expressions for P0, µx, P1,Σ0 are shown in appendix B.4. Left multiplying by P−1
0

yields (3). After a normalization of one covariance matrix parameter, the VAR is exactly

identified. I calibrate σv = 0.01.

Restrictions on prices of risk. The matrices governing the mapping of factors into

prices of risk shown in (9) and (11) are high-dimensional. As Bauer (2016) notes, absent

restrictions on the prices of risk, the estimation does not take into account cross-sectional

information in the yield curve. Accordingly, I incorporate two sets of restrictions. First, I

follow Ireland (2015) in imposing that, under full information, changes in prices of risk are

driven by entirely by changes in vt, and that vt is not itself a source of priced risk.Second,

central bank has raised rates in response to an increase in risk premia. McCallum (2005) suggests a Taylor
rule with smoothing and a reaction to the term spread - itself affected by a possibly time varying term
premium - is consistent with a negative slope coefficient in Campbell and Shiller (1991) regressions.

13Stationarity is assumed for two, related, technical reasons. The first is that interest rate processes that
contain a unit root will leave long-run yields undefined. The second, related issue, is the stationarity of asset
prices helps ensure that approximation error caused by truncating k̄ can be made arbitrarily small (Nimark
(2007)).
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I follow Barillas and Nimark (2015) in restricting Λj
t to nest the full information version of

the model without maturity shocks. This means that the same number of parameters govern

prices of risk in the full and dispersed information models.14 Details of how these restrictions

are implemented are shown in appendix B.5.

3.3 Signals

The last step is to specify agents’ agents’ idiosyncratic signal structure. I do not formally

model the information choice of traders but impose an exogenous information structure.15

I assume prices are observed without error, but individuals’ observations of the non-price

factors driving prices of risk are subject to idiosyncratic noise that is uncorrelated across

variables. Recalling (4), I assume bond traders observe the short rate and separate signals

about inflation and the long-run inflation target. To summarize:

xjt =


1 0 0 1 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

xt +


0 0 0 0
σ̃π 0 0 0
0 σ̃y 0 0
0 0 σ̃τ 0
0 0 0 σ̃v



ẽt
π

ẽt
y

ẽt
τ

ẽt
v

 (21)

14Like Barillas and Nimark (2015) I also assume the maturity specific shocks shocks have the same standard
deviation across yields, although the shocks to each yield are independent.

15Exogenous information keeps the model tractable enough to allow for likelihood based estimation. The
downside is vulnerability to a Lucas-critique-like argument that the allocation of attention is not invariant
to policy changes, and the model does not let the precision of signals vary over the business cycle, as it
might in a model where agents optimally (re)allocate attention. The advantage is this allows estimation of
the precision of traders’ information that is consistent with asset price movements over the sample.
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4 Solution and Estimation

4.1 Solution

The solution to the model is a fixed point of the bond pricing terms (An, Bn) and agents’

beliefs. In particular, we need to find a fixed point between the price recursions, equations

(13) and (14), the mean-square error matrix for state forecast error (equation (29) in the

appendix), and the law of motion for the hierarchy of average higher-order expectations

(equation (31) in the appendix). The precise numerical procedure for finding a fixed point

is detailed in appendix C.

4.2 Econometric Model and Data

The model period is a quarter and the estimation runs from Q4:1971-Q4:2007. The end date

is chosen prior to the zero lower bound period because the linear model does not respect the

ZLB constraint.16 I take data on (non-annualized) zero coupon yields from the yield curve

estimates in Gurkaynak et al. (2007), averaged over the quarter. In the econometric model,

I use the the short rate (assumed to be the Federal Funds Rate, as in Piazzesi et al. (2013)),

and rates on 1,2,3,4, 5 year and 10 year bonds.17

To identify agents’ beliefs and the macroeconomic dynamics, I use data on the output

gap (calculated as the log difference between real GDP and its HP filtered trend using

a smoothing parameter of 16,000)), inflation and inflation forecasts (as measured by log

changes in the GDP deflator), and treat τt and vt as latent process.

16The recent literature on shadow rates - for example Wu and Xia (2014) and Bauer and Rudebusch
(2016) - emphasizes that dynamic term structure models perform poorly when the zero lower bound is not
taken into account. Moreover, the zero lower bound introduces a nonlinearity in the signal structure which
the conventional Kalman filter does not take into account. Estimating shadow rate models involves either
discretization of the state space or simulation-based methods which are computationally infeasible in this
dispersed information setting.

17Note agents are assumed to observe the whole yield curve, not just this subset.
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I use the cross-section of one and four quarter ahead forecasts from the Survey of Pro-

fessional Forecasters in the estimation. The advantage of inflation forecasts is that they are

available for the entire sample period with a relatively high response rate. Moreover, inflation

forecasts in the SPF are quite accurate on average, which means my choice of data does not

automatically favor sizable information frictions. Individual survey responses are treated as

a noisy indicator of the average expectation, where the extent of the noise is pinned down by

the model-implied cross-section of expectation around the first-order average expectation.

This matrix can be calculated using the Kalman filtering problem of individual agents (see

appendix B.2). Because the number of respondents to the SPF has varied over time, the

number of observables at different times is time varying. Accordingly, the Kalman filter

equations used to estimate the likelihood of the model are time varying. Assuming there are

m1
t respondents to the 1-period ahead question and m4

t to the four-period ahead question in

the SPF at time t, the state space system for estimation is

Xt = µX + FXt−1 + [C,0d(k̄+1)×m1
t+m

4
t
]ūt

ūt ∼ N(0, 1) with dimension (d+ (n̄− 1) +m1
t +m4

t )× 1

z̄t = µz̄,t + D̄tXt + R̄tūt

(22)

where in particular µz̄,t, D̄t and R̄t vary in size to account for missing observations. The

matrices are reported in appendix D.

For the full information version of the model, I treat forecasts as if they are observations

of the rational expectations forecast with i.i.d. error. I allow each forecast horizon to have

a different error variance. I also treat each individual bond yield as if it were observed

with maturity-specific econometric error. Conceptually, these errors are distinct from the

errors in the dispersed information version. In the dispersed information model, the “noise”

in forecasts is pinned down by the model-consistent state mean square error matrix. As

discussed earlier, the maturity specific shocks are a risk faced by traders in the model,

rather than being econometric noise in the empirical model.
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I estimate the model via Bayesian methods. In particular, I use a Metropolis-Hastings

Markov Chain Monte Carlo procedure to estimate the model parameters. Because the model

has a large number of parameters and is computationally burdensome to solve, I use some-

what informative priors on macroeconomic variables to focus on reasonable areas of the

parameter space. As noted earlier, I restrict φv ≥ 0. I also place some informative prior

restrictions on VAR parameters. I impose that ρyv is non-positive, which implies that all

else equal, greater risk premia are contractionary. This is consistent with most general equi-

librium models with financial frictions. For similar reasons, I impose a slightly informative

prior that for ρyr that is centered around -1, while still allowing the estimation to explore

regions of the parameter space where this restriction does not hold. Finally, I follow Ireland

in calibrating ρττ = 0.999. Prior distributions are reported in appendix G.

I follow Ireland (2015) in imposing the identifying restriction that λxπ < 0 to pin down how

the latent process vt affects risk premia. To ensure long-run bond prices are well defined the

estimation imposes that physical and risk-neutral dynamics of bonds are stationary under

full information. This implies only accepting parameter draws such that the maximum

eigenvalues of F P and F P − Cλx are less than one in modulus.

To summarize identification: The macroeconomic VAR is exactly identified by impact

restrictions on the exogenous processes. Because agents are assumed to have rational expec-

tations, their beliefs about the macroeconomic VAR are correct. Hence, any mistakes in their

inference come from noise in their signals, and the extent to which they disagree about the

state depends on the noise in their private signals. If private signals were perfectly revealing,

or arbitrarily noisy, then they would receive no weight and agents would not disagree because

they would condition on common information. To the extent agents disagree, it must be

because their private signals are sufficiently informative to receive some weight. Hence, the

cross-section of inflation forecasts is informative about private signal noise because it reveals

the extent of disagreement. Agents’ beliefs must also be consistent with bond prices, so
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yields are also informative about agents’ beliefs. Given a belief process for macroeconomic

variables, agents’ beliefs about expected short rates are also pinned down; what remains

in yields has a component that covaries with macroeconomic variables (pinning down the

time-varying part of prices of risk) and an average component (the constant part of prices

of risk). Prior information is also somewhat informative macroeconomic parameters.

I run separate MCMC chains in parallel for each model. For the full information model,

each chain is of length 400,000; I discard the first 10% of each chain and subsequently

analyze every 1000th draw. The DI model is much more computationally intensive; the

results reported here are based on 5 chains of length 23, 000 each. I drop the first 50% of

each chain (because it takes longer to stabilize) and use every 100th draw.

5 Parameter Estimates and Impulse Responses

Here I report the results of the estimation for the dispersed information model.

5.1 Parameter estimates

Parameter estimates across chains, and posterior credible sets are reported in appendix table

(6).18 In terms of macroeconomic dynamics, the full and dispersed information models have

relatively similar parameter estimates. This is, unsurprising, as the model does not allow

for direct feedback from the inference problem of agents to the macroeconomy. Most of

the macro-VAR parameter estimates are basically in line with the results in Ireland (2015),

although estimates of the prices of risk differ. While some of this is likely attributable to

differences in samples, the full information estimates of those parameters have a high degree

of dispersion, as do the parameters governing the covariance of the non-financial factors with

the risk factor v. Taking the full and dispersed information parameter estimates together, it

18Full information parameter estimates are shown in appendix I.
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appears that it is difficult to separately identify the prices of risk terms, and the covariances

that govern changes in risk.

The key parameters of interest govern the informational quality of agents (the bottom

five rows of the table). The relatively small value for σν implies, all else equal, that prices

move mostly due to (higher order beliefs about) fundamentals rather than large direct shocks

to prices. This suggests the model prefers to endogenously explain movements in yields.

Agents’ idiosyncratic noise appears somewhat large in absolute terms. However, this does

not necessarily imply agents’ beliefs are inaccurate, because they understand the structure of

the economy. For example, traders know an unanticipated increase in inflation is correlated

with unanticipated increases in output (σyπ > 0), and that higher inflation today usually

depresses growth in the future (ρyπ < 0). Moreover, agents learn from prices, which aggregate

information. We cannot conclude simply from the parameter estimates that agents have

inaccurate beliefs. All else equal, noisier private signals receive less weight.

5.2 Impulse Responses

To demonstrate some of the information mechanisms at play, I plot impulse responses for

fundamentals, the first three orders of expectation about fundamentals, inflation forecasts,

and prices for a subset of the model shocks. The impulse responses discussed in this section

are shown for the posterior mode for clarity. The complete set of impulse responses for the

dispersed information ATSM, including posterior credible sets, shown in appendix H.1. 19

The fundamental impulse responses to one-standard deviation shock to the monetary

policy rule are shown in figure 2. The top row displays the responses of the fundamental

factors, while the subsequent rows show increasing higher-order beliefs about those variables

(with inflation expectations in the far right column). For inflation and interest rates, the

19The complete set of full information impulse responses are omitted for space reasons, but are available
on request.
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responses are in terms of annualized percentage points; the output gap is in percentage points,

and “risk” is scaled up by 100. As expected, a shock to the short rate causes inflation and

output to fall over the course of several years.
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Figure 2: Response of non-financial variables to monetary policy rule shock, dispersed infor-
mation model

The impulse responses illustrate the identification problem faced by agents in the model.

Agents observe the short rate has risen but also know this could be caused by any of the

fundamental shocks. Because they are unable to discern the origin of the change, they

place some posterior weight on the possibility that both inflation and the inflation target
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are elevated.20 Agents persistently misattribute the cause of the increase in short rates to

changes in the inflation target. They further believe others believe the inflation target has

risen (second order expectations are similar to first order), but third order beliefs increase by

less. This implies traders’ beliefs, in addition to being imperfect, are dispersed - on average,

they believe that others do not share their beliefs, especially about others’ beliefs. Over

time, as they observe the evolution of prices and their noisy signals about macroeconomic

dynamics, their beliefs approach the true impulse responses (top row). In short, optimal

inference in the model is characterized by mistaken beliefs about the origins of shocks and

divergence of average beliefs from higher order beliefs.

Interestingly, dispersion of beliefs after an interest rate shock does not have a large direct

effect on yields (figure 3). The overall response of yields to the shock are shown in the first

row. Subsequent rows show the decomposition into rate expectations, “classical” risk premia,

and the higher order wedge (as described in appendix B.6). Average rate expectations (row

2) are elevated as a result of the shock, which explain nearly all of the increase in yields,

even at the long end of the yield curve. In other words, agents may not know why rates have

increased, but everyone agrees the path of short rates will be persistently elevated. This is

driven by beliefs about the inflation target, which raises the expected path of short rates.

Classical risk premia (row 3) and the higher order wedge (row 4) barely move as a result of

the shock.

Because the path of expected short rates does not adjust as quickly as it would under

full information, long term yields rise more after a rate shock and remain elevated. In other

words, the inference problem of agents in and of itself matters for the assessment of financial

fluctuations. As will be shown in section 7, once we account for the slow adjustment of

expectations, yields are mostly attributed to the expectations hypothesis component.

20The rise in inflation expectations may seem puzzling. However, it is consistent with the sign-restricted
VAR results of Melosi (2017) and Struby (2018); in US data, identified monetary policy shocks cause inflation
expectations to rise on impact, perhaps because of signaling effects.
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Figure 3: Response of financial variables to monetary policy rule shock, dispersed information

A similar set of impulse responses for a one standard deviation increase in the inflation

target τ are shown in figures 4 and 5. Movements in the inflation target cause level shifts in

the yield curve by persistently raising short rates.21 Agents are slow to adjust the shock, so

the level shift is gradual, rather than immediate, but the shock to the inflation target raises

yields across the board by approximately the same amount over the course of several years.

This is similar to the role it plays in the full information model (included in appendix I)

What is interesting is the difference between fundamentals (the top line in figure 4)

and higher order beliefs about those fundamentals. As in the full information model, a

21Recall that the inflation target is the most persistent shock, with its autoregressive component calibrated
to ρττ = 0.999.
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higher inflation target is associated with a temporary expansion in output. However, agents

observing higher rates, accompanied by upward movements in inflation and risk, actually

believe that output rises initially, falls over the medium term, and rises again. Higher order

believes follow this pattern, although third-order expectations move more dramatically.
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Figure 4: Response of non-financial variables to inflation target shock, dispersed information

“Risk shocks” (shocks to v) are shown in figures 6 and 7. The effect of risk shocks on

macroeconomic variables and asset prices stand in contrast to the risk shocks in Ireland

(2015). In his paper, the co-movements brought on by risk shocks are qualitatively similar

to those of a monetary policy shock, albeit without a “price puzzle.” By contrast, impulses

to vt in both the full- and dispersed-information versions of the model estimated here have
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Figure 5: Response of financial variables to inflation target shock, dispersed information

nearly no direct effect on output, but depress inflation, and the reduction in inflation leads

output to grow over time. Since this holds for both the full- and dispersed-information

models, it is not a result of the information assumption.22

In terms of asset prices, risk shocks increase risk premia more than monetary policy

shocks. More importantly, risk premia move much less in the dispersed information model

22 Two possibilities for differences in the dynamic behavior for vt between these results and those of Ireland
(2015) present themselves. One is that this is driven by differences in sample, particularly, the difference in
sample period. One other sample difference is that I include inflation forecasts. Removing those forecasts
from the dataset does not qualitatively change the impulse responses at the posterior mode of the full
information model. The second possibility, alluded to earlier, is that the risk parameters and the prices of
risk are not particularly well identified. Both of these explanations suggest stronger prior information might
“smooth out” the posterior and make the impulse responses to risk shocks more strongly resemble those of
Ireland. In the absence of strong priors, these dynamics appear to be what the data prefers.
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Figure 6: Response of non-financial variables to risk shock, dispersed information

than under full information. From the point of view of the dispersed information model,

the full-information rational expectations risk premia conflates the difference between full

information average expectations and actual average expectations, the effect of higher-order

expectations, and “classical” risk premia, which are the part of the counterfactual consensus

price unexplained by average rate expectations. Since the parameter estimates imply differ-

ent expected short rates, the full information risk premia appears to be largely driven by the

assumption of full information rational expectations.

Other impulse responses are shown in appendix H.1. The macroeconomic implications

are as expected. Shocks to the output gap induce positive comovement in inflation, output,
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Figure 7: Response of financial variables to risk shock, dispersed information

and interest rates - in a sense they are similar to demand shocks in DSGE models. Inflation

shocks raise output on impact but lower it over the medium term. Apart from the initial

(positive) change in output, they somewhat resemble cost-push shocks to the Phillips curve

in New Keynesian models.

6 What do traders learn from?

In this section, I characterize the informativeness of agents’ signals. In most models of

dispersed information, agents are assumed to learn only from idiosyncratic signals about
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fundamentals. Since agents’ noisy signals are true on average, it is possible that asset

prices clean out idiosyncratic noise and agents are able to determine the true realization of

fundamentals. And, because prices reflect the beliefs of agents, it may be possible that yields

do not contain any information that agents do not already know. However, the estimates

imply that despite abundant common information, agents’ information is imperfect and

dispersed. To preview the results, agents learn about half of what they know about the

output and inflation gaps from their private signals, and learn much less about policy or the

financial risk factor. The rest of their information about fundamentals comes from prices.

Moreover, the majority of traders’ information about the beliefs of others also comes from

observing prices. The most important price signal appears to be the policy rate of the

central bank, which is also the yield on a bond that matures in one period. The short rate

is informative about fundamentals, and because everyone knows that everyone learns about

fundamentals from this particular signal, it is also informative about higher-order beliefs.

The approach I use to understand the informativeness of prices is drawn from information

theory. In particular, agents’ posterior uncertainty can be characterized in terms of entropy,

which can be thought of as the average number of binary signals needed to fully describe the

outcome of a random variable.23 We can characterize how much agents learn from signals

about a particular variable in terms of the reduction in entropy after observing those signals

(see appendix F for details). Adapting a measure used in Melosi (2017), I examine how

informed agents are after viewing a counterfactually limited subset of signals relative to to

how informed they would be if I let them use the complete set. In other words, I calculate

how informed they are after observing all of their private signals and the yield curve. I then

calculate how informed they would have been under a counterfactual subset of signals. Since

on average additional information must (weakly) reduce uncertainty, we can think of the

23The entropy-based measure of signal informativeness I use is also used in the rational inattention liter-
ature initiated by Sims (2003) to describe the constraint on agents’ information processing capacity.
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Table 1: Reduction in uncertainty about fundamentals (columns) coming from observing a
single signal (rows).

Signal(↓), fundamental → π gy τ v
rt 0.42 0.45 0.97 0.64
πj 0.03 0.03 0.12 0.00

gy
j

0.03 0.07 0.04 0.00
τ j 0.00 0.00 0.09 0.00
vj 0.37 0.33 0.03 0.24

reduction in entropy coming from the subset of signals as the fraction of total information

that could have come from that set. If the reduction in entropy were zero, it would imply

there was no information in those signals. The advantage of this measure is that it respects

both that agents’ inference is optimal (by assuming that they do the best they can with

whatever signals they have) and signals may be redundant.

Table 1 shows the relative reduction in uncertainty about macroeconomic fundamentals

variables (columns) from observing the short rate (first row) or a single private signal (re-

maining rows). These represents extreme constraints on agents’ information. The second

row, for instance, suggests, that very little (around 3%) of the information traders have about

inflation comes from their inflation signal in particular (second row, first column).24 Three

features of the table stand out. First, individual private signals are not terribly informative

in general. Second, as to be expected from the fact that agents understand the structure of

the model, signals are informative not just about their own realization but about the realiza-

tions of other variables; for example, knowing something about inflation tells you something

about the output gap. This feature of the world is ignored in most exogenous information

models because they typically assume agents learn about independent exogenous processes.

Indeed, observing only the short rate would give you more information about fundamen-

tals than observing any individual noisy signal. This is likely for two related reasons. First,

24The columns will not generally sum to 1 because some information is redundant between signals and
because yields are also informative.
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Table 2: Reduction in posterior uncertainty about about fundamentals and higher order
beliefs from observing only private signals

gr gπ gy τ v
xt 0.02 0.41 0.41 0.16 0.24

x
(1)
t 0.01 0.09 0.08 0.09 0.02

x
(2)
t 0.02 0.12 0.11 0.08 0.03

x
(3)
t 0.04 0.12 0.12 0.08 0.04

the short rate depends directly on the contemporaneous realization of all fundamentals. Sec-

ond, it is observed without error. Despite the fact that agents are unable to perfectly identify

which fundamental moved the short rate, they do know that noise does not factor into their

observation; any movement in the short rate is important.

Table 2 shows (relative to the benchmark with price signals) how much agents’ posterior

uncertainty is reduced by conditioning only on their four private signals. Here, I switch

to considering the risks agents face (i.e., leaving rates and inflation in terms of their gaps)

rather than realizations.

As the first row of the table reveals, agents’ private signals are most informative about

the inflation and output gaps. Agents get just under half of their information about the

macroeconomy from their private signals. They can learn very little about risk and the

implicit inflation target from observing their idiosyncratic signals and almost nothing about

the rate gap grt ≡ rt − τt (recall they are assumed to not observe the short rate in this

counterfactual). The remaining lines show how much of their information about (higher-

order) expectations come from private signals. Since private signals are about the true

realization of variables, rather than higher-order beliefs about those variables, they are only

indirect signals about higher order beliefs.

Another way of thinking about the results in table 2 is “what are price signals informative

about?” It turns out that the majority of information agents have about the financial risk

factor (v) and monetary policy (summarized by gr and τ) comes from observing price signals,
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including the short rate. Nearly all of their information about the first three orders of

expectations is encoded in price signals (rows 2-4). Yield curve variables may not be fully

informative about fundamentals or the beliefs of others, but the vast majority of information

traders have about the latter seems to come from prices.

This result has two immediate implications. First, it validates thinking of the yield

curve as a summary measure of what bond traders believe. Indeed, the model implies

that the best bond traders can do to understand what others believe is by combining their

understanding of how expectations are determined with the prices they observe. Since prices

depend mostly on higher-order beliefs, prices are useful to bond traders even though they

aren’t fully informative about fundamentals. Second, the results caution against ignoring the

informativeness of prices - agents may have very inaccurate signals on average, but the ability

to learn from prices makes that less consequential. This matters directly for models featuring

dispersed information. An econometrician calibrating the informativeness of private signals

using only forecasts while ignoring the role of learning from prices would incorrectly conclude

that private signals must be quite accurate.

The estimates imply most of what traders learn can be found by combining of their

private signals and the short rate. The results of this counterfactual are shown in table 3.

Effectively all of what they know about monetary policy and risk comes from their private

signals plus the policy rate, and 75% or more of what they know about the first three orders

of expectation can be extracted without using bonds with a maturity of greater than one

quarter.

This result adds to recent evidence, such as that of Tang (2013) and Melosi (2017)

that the Federal Reserve’s policy instrument is an important signal. It tells observers a

great deal about macroeconomic fundamentals and policy risks. And because it is a public

signal that evidently contains a lot of what agents know about fundamentals, it plays an

outsized role in market participants’ higher order beliefs (along the lines of Morris and
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Table 3: Reduction in posterior uncertainty about fundamentals and higher order beliefs
from observing private signals and rt

gr gπ gy τ v
xt 0.98 0.85 0.88 0.99 0.93

x
(1)
t 0.86 0.72 0.72 0.92 0.90

x
(2)
t 0.85 0.81 0.78 0.90 0.92

x
(3)
t 0.86 0.85 0.84 0.90 0.94

Table 4: Reduction in posterior uncertainty about fundamentals and higher order beliefs
from observing private signals and ten year yield

gr gπ gy τ v
xt 0.23 0.82 0.76 0.94 0.60

x
(1)
t 0.10 0.68 0.55 0.70 0.36

x
(2)
t 0.12 0.77 0.65 0.66 0.32

x
(3)
t 0.17 0.82 0.72 0.63 0.30

Shin (2002)). Assuming agents learn only from private signals and the policy rate - the

information assumption of Melosi (2017) and Kohlhas (2015) - is a fair approximation of

what bond traders appear to learn from.

To emphasize the fact that the policy rate is somewhat special, table 4 shows a coun-

terfactual where agents learn from their private signals and ten year yields rather than the

federal funds rate. Ten year yields are informative about both fundamentals and higher-

order beliefs above and beyond private signals, but they are less informative than the policy

rate. This is especially true about the current policy gap (the first column) and the risk

factor v (the last column).

Why are ten years yields less informative? The price of a ten year bond is determined

not just by fundamentals (the short rate), but also higher order beliefs about the evolution

of fundamentals over the next ten years, plus the maturity-specific shock. The fact that the

bond is of longer maturity means that (increasingly) higher order beliefs play a greater role

in its price. The fact that shocks to fundamentals are transitory, higher-order beliefs play

a bigger role in prices, and that bond prices are affected by maturity specific shocks, imply
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they will be less informative about current fundamentals. If, for instance, bond prices were

not affected by noise, then they would be fully revealing of fundamentals and agents would

not need to rely on the short rate as a source of information.

These results come with a few caveats. First, in keeping with the majority of the lit-

erature, the model is constructed specifically to price a single type of asset. Other types

of assets may be informative about a different set of macroeconomic or idiosyncratic risks.

Information from other asset types would be captured by the precision of private signals.

Second, the results of this section are partial equilibrium in the sense that the model does

not allow for direct feedback from expectations to macroeconomic aggregates. But from the

point of view of an atomistic agent, macroeconomic aggregates are exogenous processes and

the precise role of information in generating aggregate fluctuations should not matter.

7 Decomposing (Higher Order Expectations in) the

Yield Curve

Despite the abundance of public signals, non-trivial dispersion of higher order beliefs persists

in the model. A natural question is what direct effect this dispersion of belief has had on

prices, and more generally what the model attributes variation in bond yields to. In this

section, I use estimates of the underlying higher-order beliefs to decompose prices as outlined

in appendix B.6.25 I use this to answer two questions: (1) What does the model attribute

changes in bond yields to - changes in rate expectations, “classical” risk premia, or higher-

order beliefs? (2) Which higher-order beliefs matter for prices? Briefly, the answer to the

first question is that (slowly adjusting) rate expectations play the largest role in determining

25The results here are based on Kalman filtered estimates of the state, which can be thought of as inefficient
estimates of the underlying hierarchy of higher-order expectations Xt. Kalman smoothing, which takes
account of the whole sample to derive estimates, presents numerical problems because the one-step ahead
state forecast error matrix is numerically ill-conditioned. The filtered estimates are closest to what the
Kalman smoother would imply at the end of the sample.
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yields at all horizons. Classical risk premia are nearly constant for bonds at all maturities,

but the importance of the higher order wedge increases in the maturity of the bond. As for

the second higher order beliefs about monetary policy variables - the rate gap gr and the

inflation target τ - drive most of the time variation in the wedge.

Informally, we can think about yields as be being driven by a part that is rate expectations

and a residual. The information assumption implies the path of rate expectations, and thus

determine the “expectations hypothesis” part of bond yields. Combined with our assumption

of no-arbitrage and the way risk is priced, full information rational expectations implies the

residual is the risk premium. However, as the decomposition outlined in appendix B.6

shows, under dispersed information the residual can be interpreted as the sum of the higher-

order wedge and the gap between average expected short rates and the price that would

obtain if agents counterfactually held common beliefs. The residual in the full and dispersed

information models may also be different because they imply different short rate forecasts.

Although one could focus on bonds of any maturity, here I focus on ten year yields.26 The

three-way decomposition is shown in figure 8. Comparing the top two panels, it is clear that

the model attributes the majority of movement in bond yields to rate expectations. In other

words, accounting for agents’ subjective rate expectations makes the implied premium for

investing in long term bonds less volatile. That premium is divided between the “classical”

premium and the higher order wedge; they are of roughly equal magnitudes, but the former is

close to constant while the wedge varies over time. The reduced importance of compensation

for risk in determining bond yields is qualitatively consistent with Piazzesi et al. (2013), who

use a very different methodology to arrive at this conclusion.

This result implies at least part of the dramatic failure of the expectations hypothesis is

attributable to assuming agents’ expectations are based on full information. Accounting for

the fact that agents’ subjective forecasts may be different from the underlying full information

26The results for other maturities are found in the appendix H.3.
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Figure 8: Decomposition of 10 year yields, dispersed information

forecast means that volatile time varying risk premia are not needed to explain movements in

long term yields. The remaining premium for holding long term debt is partially about time

varying compensation for risk (the classical risk premium) that is unrelated to disagreement.

However, the the larger, time varying portion is attributable to the failure of consensus -

that is, the fact that agents believe others have different beliefs. Both classical risk premia

and the higher order wedge rose during the Volcker disinflation and declined afterwards.

Why did risk premia and the higher order wedge decline over time? The model restric-

tions imply a decline in the classical risk premium must be attributable to a decline in vt over

time. The inflation target variable τt is also falling over this period and since the estimated
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results imply σvτ > 0 the decline in the inflation target appears to have driven the decline in

risk.27 We can also examine the role of higher order beliefs about these variables in deter-

mining yields. In figure 9, I show the higher-order wedge decomposed into the contribution

from higher-order beliefs about fundamentals. The decomposition reveals that the model

attributes growth in the higher order wedge to an increasing role for higher order beliefs

about the inflation target. A smaller contribution comes from higher order beliefs about

the rate gap gr = rt − τt. Since rt is commonly observed, this means that overall policy

uncertainty contributes the most time variation to the wedge, at least for ten year yields.

This is (partially) counterbalanced by higher order beliefs about the risk variable, which

grew in the late 1970s and 80s but fell afterwards.

A plausible explanation for this change is uncertainty about the goals and credibility of

the Federal Reserve prior to the Volcker disinflation, which was replaced by over time by

increased trust in policymakers’ commitment to fighting inflation. Uncertainty about the

inflation target implies that people may have not only been unsure what the target was, but

also what others believe the target to be, and what they believe others believe, and so on.

Changes in the long-run inflation target are more important for long-run bonds because a

nominal bond’s real returns are eroded by sustained higher inflation. A greater commitment

to fighting inflation and greater transparency may have lead to a gradual consensus about

what the Fed’s current stance of policy and its implicit inflation target likely was. This may

have lead to the decline in the higher order wedge over time.28

27Appendix figures 17a and 17b show the estimated paths of these variables both steadily declined from
the early 1980s to the early 2000s.

28The importance of the credibility of the central bank’s inflation target is consistent with Wright (2011).
He argues changes in the conduct of monetary policy lowered inflation uncertainty and that inflation un-
certainty significantly explains the five-to-ten year forward premium across his sample of countries from
1990-2009. Both the results here and in Wright’s paper are consistent with the idea that lower inflation
uncertainty over time has caused the premium on long-term US government debt to decline. In my model,
this is a result of both the relationship between changes in the inflation target and the risk variable - that is,
the direct role of the inflation target and risk - as well as (higher order) uncertainty about monetary policy
arising endogenously from the traders’ inference problem.
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Figure 9: Decomposition of higher order wedge, ten year yields. Details of the decomposition
are found in section B.6.

Examining the decomposition also reveals a degree of canceling out of higher order beliefs.

This is because different risks are not perfectly correlated with each other, and agents’ higher-

order beliefs are constrained by the macroeconomic environment. The average and maximum

contribution of higher-order expectations to yields is shown in table 5. The contribution of

higher order expectations to the wedge is increasing over the maturity of the bond. This is

consistent with the model intuition at the beginning of section 3. Longer-maturity bonds

are a function of future expectations of future stochastic discount factors. The longer the

maturity of the bond, the larger the role of higher-order beliefs in determining the price.
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Table 5: Contribution of higher-order wedge to yields at the posterior mode

1 year 2 year 3 year 4 year 5 year 10 year
Average 0.03 0.15 0.18 0.20 0.44 0.66

Maximum 0.10 0.31 0.40 0.55 0.72 0.89
Average contributions by source:

gr -0.05 -0.28 -0.41 -0.11 0.11 0.31
gπ 0.03 0.23 0.36 0.19 0.04 -0.09
gy 0.12 0.59 0.93 0.71 0.48 0.28
τ -0.14 -0.78 -1.18 -0.50 0.04 0.54
v 0.01 0.09 0.14 -0.08 -0.23 -0.37

Table 5 also reveals how higher-order beliefs about different risks play different roles in the

wedge across different maturities. This is a result of the expected time path of higher order

beliefs and how different risks are priced at different horizons. In particular, as figure 4

reveals, higher-order beliefs about the output gap tend to fall over the medium term when

the inflation target rises, which (along with the estimated prices of risk) explains why during

the period when τ contributes the most to the higher-order wedge for 10 year yields is also

when gy plays such a large role for 3 and 4 year bonds. For bonds of low maturity, the

contributions of higher order beliefs are very small in absolute terms and essentially cancel

out on average.29

29The contribution of higher order beliefs, and their time series properties, are somewhat different here
than in Barillas and Nimark (2015). They find that higher order beliefs play a larger role in general (with the
peak contribution as a fraction of yields in the early 1990s) and also find a large negative role for the higher
order wedge during the early 2000s. additional restrictions the structural VAR places on the risks faced by
agents. Agents’ beliefs about pricing factors and the role of those factors in prices are constrained by the
covariances between asset prices and macroeconomic yields in the data. Their latent factor model is more
flexible. A second important difference is the choice of data. Barillas and Nimark directly use SPF data on
interest rate expectations to discipline belief formation, whereas I use inflation forecasts. Inflation forecasts
in the SPF generally perform better than most forecasting models (Faust and Wright (2013)). This feature
of the data will imply agents have better average forecasts of inflation, which may mean the choice of data
generates a more conservative role for higher order beliefs. Moreover, since zero coupon yields are constructed
based on estimates from prices of different kinds of outstanding Treasury debt, there may be a concern that
the “model” concept of Treasury yields is different from the concept that the SPF forecasters had in mind,
which might exaggerate deviations of yields from rate expectations. This could influence estimates of the
higher order wedge. Furthermore, the quarterly time series for interest rate forecasts in the SPF is much
shorter than the inflation forecast data and a worse response rate. Inflation forecasts are available for the
whole sample period. The higher order wedge appears to play a greater influence in the Barillas and Nimark
(2015) results once rate forecasts become available.
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8 Conclusion

Survey evidence suggests professional forecasters have dispersed beliefs about future prices

of Treasury bonds and macroeconomic variables. In this paper, I construct and estimate a

structural model that reflects this feature of the world. My estimates imply that the direct

role of belief dispersion is somewhat modest, but that most of the time variation in the

higher order wedge is caused by policy-related factors. In particular, the wedge grew during

the 1970s and early 1980s, along with the central bank’s implicit inflation target, and fell

over the course of the Great Moderation. This is consistent with gradual learning by agents

about a new monetary policy regime and the emergence of a consensus about the conduct

of monetary policy, perhaps arising from greater transparency and credibility.

I also provide new estimates of the quality of agents’ private information and how much

they learn from prices. I find individual private signals are quite noisy. By contrast, a great

deal of agents’ information about fundamentals comes from public prices, and prices are

especially informative about the beliefs of others. Absent any of the public signals in the

model, agents are about half as informed about macroeconomic fundamentals and know only

about a fifth as much about the long-run inflation target of the central bank and financial

risk. My paper is the first to measure the importance of the policy rate as a signal of

fundamentals in an asset pricing setting where agents are not artificially constrained from

learning from other prices.

The results add to the body of evidence that deviations from full information are an

important feature of the world. Accounting for agents’ inference dramatically affects the size

and interpretation of term premia, even without constraints on using prices as information or

assuming traders have model inconsistent beliefs. The result that asset prices appear to be an

important source of macroeconomic information suggests general equilibrium macroeconomic

models with dispersed information should account for learning from prices when quantifying
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the importance of these frictions or when assessing normative questions. It also suggests, at

least for asset prices, market consistent information is not enough for aggregate irrelevance

of information frictions. This is true in two senses: Dispersed information directly affects

prices and the behavior of endogenous beliefs is quite different than under full information.

There are a number of interesting and important extensions to this paper that would be

worth pursuing. In this paper, I have focused on the informational content of a single type of

asset - nominal government debt. Other assets may have different information implications.

Extending the analysis to debt of different countries - along the lines of Wright (2011) - may

also be informative about how changes in the monetary policy framework are associated

with changes in the importance of higher-order beliefs. Throughout the paper I have taken

advantage of the fact that yields are affine. This makes characterizing the higher order wedge

and informativeness of signals straightforward. However, in the aftermath of the financial

crisis, there were nonlinearities in yields introduced by the zero lower bound which may have

affected prices’ information content. Understanding how agents’ inference changed during

the zero lower bound period would be worthwhile.
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Appendix

A Graphical and reduced form evidence on dispersed

beliefs

In this appendix, I show the empirical distribution of one-quarter ahead forecasts of short-

term interest rates, and then apply the methodology of Coibion and Gorodnichenko (2015)

to interest rate forecasts as discussed in the main text.

A.1 One step ahead Treasury bill forecasts

1985 1990 1995 2000 2005 2010 2015
−2

0

2

4

6

8

10

12

14

16

SPF survey date

P
er

ce
n
t

Empirical distribution of one quarter ahead forecasts of 3-month Treasury bill rates

Figure 10: Distribution of SPF forecasts of next-quarter average rate on 3-month Treasuy
bill.

A.2 A reduced form test for information rigidities

The methodology of this section follows Coibion and Gorodnichenko (2015).

For simplicity, assume Treasury bill rates follow an AR(1) process but agents observe

idiosyncratic, noisy signals about the realization of that process. Innovations and signal

noise are assumed to be normally distributed and mean zero:

rt = ρrt−1 + εt with ρ ∈ [0, 1)

rit = rt + eit
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Assuming agents are Bayesian learners, their conditional expectations can be written as:

Ei
trt = κrit + (1− κ)Ei

t−1rt

Ei
trt+h = ρhEi

trt

Their expectation of the short rate is a weighted average of their current signal and their

prior, where κ is the relative weight placed on the signal. As with the notation in the main

model, I use r
(1)
t|t to indicate the average expectation of rt at time t.

Averaging across agents and rearranging gives the relationship between the forecast error

for the average forecast and the revision of the average forecast at each horizon h:

rt+h − r(1)
t+h|t =

1− κ
κ

(
r

(1)
t+h|t − r

(1)
t+h|t−1

)
+

h∑
j=1

ρh−jεt+h (23)

where the error term is the sum of rational expectations errors. If signals were perfectly

informative, κ = 1, and there would be no weight on forecast revisions in this regression.

To the extent agents face information frictions, κ < 1. The simple reduced-form test of

information frictions in financial forecasts amounts to projecting forecast revisions on forecast

errors; the null hypothesis of full information rational expectations is equivalent to testing

whether the regression coefficient is 0. Finding a significant positive coefficient, on the other

hand, suggests information frictions. The regression takes the form

Average Forecast Errort,h = β(Average Forecast Revisiont,t−1
t,h ) + ε̄t (24)

where ε̄t is the sum of rational expectations errors as before.

The results of conducting this for different forecast horizons are shown in figure 11 for

3-month Treasury bills. The results are broadly consistent with Coibion and Gorodnichenko

(2015)’s findings for inflation. The estimated coefficient is positive and at least marginally

significant, suggesting average forecasts for financial variables reflect dispersed information

among individuals. The response for 10 year bonds (not shown) are more mixed and have

a high degree of uncertainty, probably reflecting the fact that the sample of available fore-
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Figure 11: Caption: Coefficients from regression (24) for Treasury Bills. Bands represent 90
percent HAC confidence bands.

casts is much smaller. However, the point estimates are consistently positive and generally

significant.

B Model derivations

B.1 Intuition

Beginning with

P n
t = Ej

t

[
M j

t+1P
n−1
t+1

]
Joint lognormality implies:

pnt = Ej
t [m

j
t+1] + Ej

t [p
n−1
t+1 ] +

1

2
Var(mj

t+1 + pn−1
t+1 )

Iterating ahead for another agent (an arbitrary k that agent j will sell the bond to)
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pn−1
t+1 = Ek

t+1[mt+2] + Ek
t+1[pn−2

t+2 ] +
1

2
Var(mk

t+2 + pn−2
t+2 )

Then substituting this into the price expectation term:

pnt = Ej
t [m

j
t+1]

+ Ej
t [E

k
t+1(mk

t+2)] + Ej
t [E

k
t+1p

n−2
t+1 ] + Ej

t [E
k
t+1p

n−2
t+1 ]

+
1

2
Var(mj

t+1 + pn−1
t+1 ) +

1

2
Var(mk

t+2 + pn−2
t+2 )

The fact that information sets are not nested means the law of iterated expectations does

not apply. However, because no agent has particular information about other agents, agent

j’s expectations about k’s expectations can be replaced by her expectation of the average

expectation. Doing so, and integrating both sides over all agents implies the equation in the

text.

B.2 The filtering problem

The individual agent’s filtering problem, and its aggregation into the vector of average higher

order expectations, follows Nimark (2007) and Barillas and Nimark (2015).

Call Xt the underlying state we want to estimate (the vector of higher order expectations,

including 0th order expectations). Call Σt|t−1 ≡ E[(Xt −Xt|t−1)(Xt −Xt|t−1)′].

Forecast step. Given information dated time t− 1, j’s forecast of the signal is

zjt|t−1 = µZ +DXt|t−1 (25)

The associated covariance matrix of signal forecasting error is

Ωt|t−1 ≡ E[(zjt − z
j
t|t−1)(zjt − z

j
t|t−1)′]

= DΣt|t−1D
′ +RR′

(26)
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Updating step. Projection of Xt − Xt|t−1 onto zjt − z
j
t|t−1 and rearrangement gives that

j’s conditional expectation of the state given her time t information is

Xj
t|t = Xt|t−1 + Σt|t−1D

′Ω−1
t|t−1︸ ︷︷ ︸

Kt

(zjt − z
j
t|t−1)

= Xj
t|t−1 +K(DXt +R

[
ut
ηjt

]
−DXj

t|t−1)

= µX + FXj
t−1|t−1 +K[D(µX + FXt−1 + Cut) +R

[
ut
ηjt

]
−D(µX + FXj

t−1|t−1)]

(27)

Deriving the aggregate law of motion. Partition R into a part associated with aggre-

gate shocks and one associated with idiosyncratic shocks, i.e. R ≡
[
Ru Rη

]′
. Integrating

Xj
t|t to obtain the vector of average higher order expectations “zeros out” the idiosyncratic

shocks, and we’re left with

Xt|t =µX + (F −KDF)Xt−1|t−1 +K[D(µX + FXt−1 + Cut) +Ruut −DµX + FXt−1|t−1)]

=µX + (F −KDF)Xt−1|t−1 +KDFXt−1 +K(DC +Ru)ut
(28)

Note that these expressions have been written in terms of the steady state Kalman gain

K. To find the steady state Kalman gain, we can derive the following discrete-time algebraic

Riccati equation (which follows from some algebra during the updating step)

Σt+1|t =E[(Xt+1 −Xt+1|t)(Xt+1 −Xt+1|t)
′]

=F(Σt|t−1 − Σt|t−1D
′Ω−1

t|t−1DΣt|t−1)F ′ +RR′
(29)

and iterate until convergence. The resulting steady state Σt+1|t, combined with (26),

immediately implies K.

Recall that we conjectured a VAR(1) process for Xt, namely

Xt ≡
[
xt
Xt|t

]
= µX + FXt−1 + Cut (30)
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so matching coefficients we can find C,F (recall there are d factors and we truncate at

order k̄)

F =

[
F P 0d×dk̄

0dk̄×d 0d×dk̄

]
+

[
0d×d 0d×dk̄
0dk̄×d [F −KDF ]

]
+

[
0d×d(k̄+1)

[KDF ]

]
C =

[
C 0
0 0

]
+

[
0

[K(DC +Ru)]

] (31)

where indicates truncation to ensure conformability and considering with only considering

expectations up to k̄.

B.3 Generating bond price equations

The steps here are identical to Barillas and Nimark (2015).

pnt = An +B′nXt + νnt

To arrive at this form, substitute the SDF (9) into the (log) arbitrage condition:

pnt = lnE

[
exp

{
−rt −

1

2
Λj′
t ΣaΛ

j
t − Λj′

t a
j
t+1 + pn−1

t+1

}
|Ωj

t

]
(32)

Here we use the definition of ajt+1 (10) to substitute pn−1
t+1 out for its expectation plus the

forecast error for that particular maturity

P n−1
t+1 = E

[
pn−1
t+1 |Ω

j
t

]
+ e′n−1a

j
t+1 (33)

where e′n is a horizontal selection vector with 1 in the nth element and zeros elsewhere.

Since we assumed agents knew the model equations we can write, we can write

E[pn−1
t+1 |Ω

j
t ] = An−1 +B′n−1

(
µX + FE[Xt|Ωj

t ]
)︸ ︷︷ ︸

E[Xt+1|Ωjt ]
(34)

Define an operator H that selects just the average higher order expectations from Xj
t (12),

that is
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E[Xt|Ωj
t ] =HXj

t

where H =

[
0dk̄×d Idk̄
0d×d 0d×dk̄

]
(35)

Combining these three expressions gives

E[pnt+1|Ω
j
t ] = An−1 +B′n−1µX +B′n−1FHX

j
t (36)

substituting this in to the no-arbitrage condition

pnt = lnE

[
exp

{
−rt −

1

2
Λj′
t ΣaΛ

j
t − Λj′

t a
j
t+1 + An−1 +B′n−1µX +B′n−1FHX

j
t + e′n−1a

j
t+1

}
|Ωj

t

]
(37)

The inner expression consists of constants and lognormal random variables. It can be written

in terms of things known to agent j at time t (so the expectation is superfluous):

pnt = ln exp

{
− rt −

1

2
Λj′
t ΣaΛ

j
t − An−1 +B′n−1µX +B′n−1FHX

j
t

+
1

2
(e′n−1Σaen−1 + Λj′

t ΣaΛ
j
t − 2e′n−1ΣaΛ

j
t)

} (38)

where the last term is 1/2 times the variance of (e′n−1 − Λj
t)a

j
t+1. Simplifying:

pnt = −rt + An−1 +Bn−1µX +B′n−1FHX
j
t +

1

2
e′n−1Σaen−1 − e′n−1ΣaΛ

j
t (39)

The price of the n period bond at time t is a function of constants, the current risk-free rate,

and j specific terms. By no arbitrage, this expression holds for all j at all times, but, like

Barillas and Nimark (2015), I focus on a hypothetical agent whose state coincides with the

cross-sectional average state. Then we can substitute Xt for Xj
t in the previous expression,

since Xt ≡
∫
Xj
t dj.

Finally substitute (2) and (11) into the previous expression:
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pnt =− (δ0 + δ′xxt) + An−1 +Bn−1µX +B′n−1FHXt

+
1

2
e′n−1Σaen−1 − e′n−1Σa

(
Λ0 + Λj

x + Λν

∫
E[νt|Ωj

t ]dj

)
(40)

Define δ′X ≡
[
δ′x 0

]
and rearrange this

pnt =− δ0 + An−1 +Bn−1µX +
1

2
e′n−1Σaen−1 − e′n−1ΣaΛ0

− δ′XXt +B′n−1FHXt − e′n−1ΣaΛxXt

− e′n−1ΣaΛν

∫
E[νt|Ωj

t ]dj

(41)

We had guessed

pnt = An +B′nXt + νnt (5)

To arrive at the conjectured form, impose two additional restrictions. First, restrict:

Λν = −Σ−1
a (42)

which also reduces the number of free parameters in the model. Secondly, we can substitute

to replace the remaining e′n−1

∫
E[νt|Ωj

t ]dj term via a convenient normalization. Note model

consistent expectations and the conjectured bond price equation imply

pnt = E[An +BnXt + νnt |Ω
j
t ] = An +BnHX

j
t + e′n−1E[νt|Ωj

t ] (43)

Setting this equal to the conjectured bond equation implies

An +BnHXt + e′n−1

∫
E[vt|Ωj

t ]dj = An +BnXt + νnt

⇒ e′n−1

∫
E[vt|Ωj

t ]dj = Bn(I −H)Xt + νnt

(44)

Substituting these restrictions:
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pnt =− δ0 + An−1 +B′n−1µX +
1

2
e′n−1Σaen−1 − e′n−1ΣaΛ0

− δ′XXt +B′n−1FHXt − e′n−1ΣaΛxXt

+Bn(I −H)Xt + νnt

(45)

Finally, write B =

[
B′2 · · · B′n̄

]
and note that Bn = en−1B. Normalizing prices of risk:

Λx = Λ̂x +B(I −H) (46)

and then

pnt =− δ0 + An−1 +B′n−1µX +
1

2
e′n−1Σaen−1 − e′n−1ΣaΛ0

− δ′XXt +B′n−1FHXt − e′n−1ΣaΛ̂xXt

+ νnt

(47)

This implies the recursive forms for the bond price equations:

An+1 = −δ0 + An +BnµX +
1

2
e′nΣaen − e′nΣaΛ0 (48)

B′n+1 = −δX +B′nFH − e′n−1ΣaΛ̂x (49)

with

A1 = −δ0 (50)

B1 = −δ′X (51)

which implies p1
t = −δ0 + [δx,0]Xt = −rt.

B.4 Macroeconomic structure

P0 =


1 −(1− φr)φπ −(1− φr)φy 0 −(1− φr)φv
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (52)
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µx =


(1− φr)gr − (1− φr)gy
−ρπrgr − ρπygy
gy − ρyrgr − ρyygy

(1− ρττ )τ
0

 (53)

P1 =


φr 0 0 0 0
ρπr ρππ ρπy 0 ρπv
ρyr ρyπ ρyy 0 ρyv
0 0 0 ρττ 0
0 0 0 0 ρvv

 (54)

Σ0 =


σr 0 0 0 0
0 σπ 0 σπτστ 0
0 σyπσπ σyπσπ σyτστ 0
0 0 0 στ 0
σvr σvπ σvy σvτ σv

 (55)

rt = δ0 + δ′xxt (2)

with

δ0 = 05×1 (56)

δ′x =
[
1 0 0 1 0

]
(57)

and the matrices governing the evolution of fundamentals (3) as

µP = P−1
0 µ0

F P = P−1
0 P1

C = P−1
0 Σ0

(58)

B.5 Restrictions on Prices of Risk

Recall expressions for the stochastic discount factor and prices of risk:
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mj
t+1 = −rt −

1

2
Λj′
t ΣaΛ

j
t − Λj′

t a
j
t+1 (9)

Λj
t = Λ0 + ΛxX

j
t + ΛνE[νt|Ωj

t ] (11)

To impose the Ireland (2015) restriction, I set:

λ0 =
[
λr λπ λy λτ 0

]′
(59)

λx =


0 0 0 0 λrx
0 0 0 0 λπx
0 0 0 0 λyx
0 0 0 0 λτx
0 0 0 0 0

 (60)

To additionally impose the Barillas and Nimark (2015) restriction, recall that the vector of

bond price innovations ajt+1 is a linear combination of forecasting error in the factors Xt+1

and maturity-specific price shocks νt+1.

ajt+1 = Ψ

[
Xt+1 − E

[
Xt+1|Ωj

t

]
νt+1

]
(61)

To see this, write j’s one-period ahead bond pricing error for a particular maturity as

an,jt+1 = pn−1
t+1 − p

j
t+1|t

= B′n−1(Xt+1 − Ej
tXt) + νn−1

t+1

(62)

So stacking these errors in a vector ajt+1 gives

ajt+1 =

 B′1
... In̄−1

B′n̄−1


︸ ︷︷ ︸

Ψ

[
Xt+1 − E

[
Xt+1|Ωj

t

]
νt+1

]
(63)

Left multiplying by Λj′
t+1:
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Λj′
t+1a

j
t+1 = Λj′

t+1Ψ

[
Xt+1 − E

[
Xt+1|Ωj

t

]
νt+1

]
(64)

We want to restrict this so that

Λj′
t+1a

j
t+1 =

([
λ0

0

]
+

[
λx 0
0 0

])′ [
Xt+1 − E

[
Xt+1|Ωj

t

]
νt+1

]
(65)

If we removed dispersed information or maturity-specific shocks, this restriction would imply

only fundamentals matter for bond prices, given the restrictions in (59) and (60). When

maturity specific shocks are equal to zero, these additional restrictions must hold:

[
λ0

0

]′ [
Xt+1 − E

[
Xt+1|Ωj

t

]
νt+1

]
= Λ′0a

j
t+1([

λx 0
0 0

]
Xj
t

)′ [
Xt+1 − E

[
Xt+1|Ωj

t

]
νt+1

]
= Λ̂′xa

j
t+1

(66)

where Λ̂x is a normalization (see appendix B.3). This can be achieved by setting

Φ = Ψ(Ψ′Ψ)−1

Λ0 = Φ

[
λ0

0

]
Λ̂x = Φ

[
λx 0
0 0

]

Ψ =

 B′1
... In̄−1

B′n̄−1


(67)

These restrictions are the same as those imposed in Barillas and Nimark (2015).

B.6 Bond price decompositions

Given the expression for prices and a model for inference, we can characterize what portion

of bond yields are driven by higher-order beliefs - that is, the portion of yields driven di-

rectly by dispersed information. Common knowledge of rationality and fact that Xt has a

Markov structure implies (1) bond prices are pinned down by the current state and thus
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agents’ forecasts of future states determine their forecasts of future bond prices, and (2) all

information about future Xt is summarized in today’s state (Barillas and Nimark (2015)).

Hence, two agents who agree about Xt agree about Xt+1, Xt+2, etc, and thus agree about

price forecasts. Intuitively, the difference between actual prices and the price that would ob-

tain if all agents counterfactually held the same beliefs is the direct contribution of dispersed

information to the bond price.30 Like Barillas and Nimark (2015), I use the wedge between

the counterfactual price with common beliefs and actual prices to quantify the extent to

which dispersed information about particular factors affects bond yields. Moreover, because

priced risks have a macroeconomic interpretation, the wedge can be decomposed in order to

understand whether disagreement about particular macroeconomic conditions are important

for determining yields at different maturities.

Define a matrix operator H̄ that replaces all higher order expectations with first order

expectations, that is:


xt
x

(1)
t
...

x
(1)
t

 = H̄


xt
x

(1)
t
...

x
(k̄)
t

 (68)

The price that would obtain if all higher order expectations coincided with the first order

expectation - the “counterfactual consensus price” - is

p̄nt = An +B′nH̄Xt + νnt (69)

We can use this to decompose prices into the component that depends on averag (first order)

expectations and the component that depends on dispersion of information and the resulting

divergence of expectations about expectations. The wedge can be written as:

30Allen et al. (2006) show in a similar setting how prices of long-lived assets will not generally reflect
average expectations when there is private information. Barillas and Nimark (2015) refer to the difference
between actual prices and the counterfactual consensus price as the “speculative component”; Bacchetta and
Van Wincoop (2006) refer to it as the “higher order wedge.” The preferred interpretation of Bacchetta and
Van Wincoop is that it is the present value of deviations of higher-order beliefs from first-order beliefs.
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pnt − p̄nt = B′nXt −B′nH̄Xt = B′n(I − H̄)Xt (70)

The counterfactual consensus price, which contains only the effect of average expectations in

yields, can be decomposed into short rate expectations and “classical” risk premia - that is,

the part of yields that depends on first-order average beliefs net of average rate expectations.

pnt =Aprem
n +Bprem′

n Xt + Arate
n +Brate′

n Xt + B′n(I − H̄)Xt︸ ︷︷ ︸
higher order wedge

+νnt (71)

Where Aprem
n = An−Arate

n , Bprem′
n = B′nH̄−Brate′

n . To make this decomposition operative,

we need the model-implied future expected short rates. For the hypothetical average agent,

Et|trt+1 = −δ0 − δXHXt+1|t = −δ0 − δX(µX + FHXt)

and so on for further ahead future short rates:

Arate
n =− n(δ0 + δXµX)− δX

n−1∑
s=0

F sµX

Brate′
n =− δX

n−1∑
s=0

F sH
(72)

The decomposition of the wedge is a straightforward selection of different elements. For

example, the portion of the higher-order wedge attributable to higher-order beliefs about

the long-run inflation target τt is

B′n(I − H̄)Xτ
t ≡

B′n(I − H̄) · diag
[
0 0 0 1 0 · · · 0 0 0 1 0

]
Xt

(73)

Note that this depends on both the level of the (higher order) expectations (i.e., τ
(2)
t , τ

(3)
t )

and so on), and how that level translates into compensation for risk (from B′n).
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C Fixed point procedure

0. Given a set of parameters, we construct H using (35), δ0 δx, µ
P , F P , C, λ0 and λx using

(56)-(60). We need an initial guess of B (typically starting with the full information

B). This implies an initial An using (13), and thus D for the agents’ filtering problem.

We must also guess C,F , typically at the full information solution.

1. The Kalman filtering problem implies steady state Σt+1|t using (29).31 This implies

steady state Ωt+1|t and K. Construct F , C from (31).

2. We have

Σa = Ψ

[
Σt+1|t 0

0 Σν

]
Ψ′ (74)

where Σν is the covariance matrix of maturity shocks, a diagonal matrix where the

nonzero elements are of the form

√
Var(ent ) = nσν (75)

(this implies the variance of maturity shocks is constant across yields, which reduces

the number of free parameters). Recall we had assumed Λν = −Σ−1
a .

3. Update our guess of B using (14) and check for convergence. If B, C,F have converged,

stop. Else, go to step 1.

31In practice, the bulk of time spent on the solution is in this step. Since no closed form exists for
the Kalman gain in a general multivariate setting, I must numerically find the Kalman gain by solving the
discrete-time algebraic Riccati equation. In this particular setting, the fastest way to solve the equation seems
to be through iteration until convergence, with an additional step to ensure that the matrix is symmetric.
The latter step is necessary to avoid numerical problems due to round-off which is common in large-dimension
Kalman filtering problems.
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D Econometric matrices

The model-consistent notion of dispersion of signals around the average comes from agents’

Kalman filtering equations. Any dispersion in belief must come from idiosyncratic signals.

The idiosyncratic error covariance matrix is the solution to the following Riccati equation:

Σj = E[(Xj
t −X

(1)
t )(Xj

t −X
(1)
t )′]

= (F −KDF)Σj(F −KDF)′ +KRηR
′
ηK
′ (76)

Hence the cross-sectional variance in average forecasts is just the appropriate element of Σj:

V ar(πjt|t) = [0, 1, 0, 1, 0,01×d∗(k̄)]]︸ ︷︷ ︸
≡eπ

Σje
π′

(77)

The non-constant parts of the econometric matrices in (22) are:

D̄t =



I4 04×2 04×k̄
−1

4
B′4

−1
8
B′8

− 1
12
B′12

− 1
16
B′16

− 1
20
B′20

− 1
40
B′40

eπF × Im1
t

eπ · F4 × Im4
t s


(78)

R̄t =



03×d+n̄−1+m1
t

σν


e3

e7

e11

e15

06×d e19

e39


√
eπFΣjF ′eπ′ × Im1

t√
eπF4Σj(F4)′eπ′ × Im4

t


(79)

For the full information model, the equations are the same. However, instead of the σν
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terms, the observed bond yields are assumed to be observed with yield-specific error.32, and

the cross-sectional estimation error terms for the forecasts are replaced with horizon-specific

error terms σ̃π
h, h = 1, 4.

E Dispersed-information parameter results

32A common practice to avoid a stochastic singularity problem, used by Ireland (2015) among others, is
to assume that only certain yields are observed with error. However, as Piazzesi (2009) points out, which
set of yields to treat as viewed with error is essentially arbitrary, and assuming all of them are viewed with
error does not pose any computational difficulty in this setting.
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Mode Mean Median 5% 95% Std.
φr 0.5357 0.5339 0.5355 0.5324 0.5370 0.0224
φπ 0.1835 0.1851 0.1869 0.1768 0.1908 0.0090
φy 0.1016 0.1010 0.1010 0.0928 0.1101 0.0066
φv 0.0349 0.0343 0.0348 0.0305 0.0365 0.0024
σr 0.0029 0.0033 0.0032 0.0029 0.0038 0.0003
ρyr -0.9329 -0.9954 -0.9994 -1.0440 -0.9312 0.0539
ρyπ -0.3871 -0.4088 -0.4134 -0.4361 -0.3730 0.0254
ρyy 0.9164 0.8988 0.9031 0.8794 0.9136 0.0389
ρyv -0.0007 -0.0008 -0.0006 -0.0022 -0.0000 0.0007
σyπ 0.3329 0.2873 0.2711 0.2443 0.3355 0.0362
σyτ 2.6888 2.6788 2.6878 2.6491 2.7163 0.1140
σy 0.0062 0.0068 0.0068 0.0063 0.0071 0.0004
στ 0.0008 0.0009 0.0009 0.0008 0.0010 0.0001
ρπr 0.9229 0.8949 0.8882 0.8650 0.9323 0.0453
ρππ 0.4331 0.4368 0.4372 0.4223 0.4564 0.0208
ρπy -0.1998 -0.1870 -0.1872 -0.2027 -0.1724 0.0117
ρπv -0.1139 -0.1105 -0.1114 -0.1143 -0.1062 0.0055
σπτ -0.1380 -0.1483 -0.1452 -0.1993 -0.1123 0.0309
σπ 0.0031 0.0034 0.0033 0.0031 0.0037 0.0002
ρvv 0.8633 0.8600 0.8613 0.8589 0.8640 0.0360
σvr 9.7831 9.8318 9.8834 9.7764 9.8987 0.4138
σvπ 2.1485 2.1574 2.1672 2.1123 2.1919 0.0932
σvy -2.1067 -2.1144 -2.1111 -2.1939 -2.0638 0.0972
σvτ 0.8502 0.8581 0.8577 0.8215 0.9125 0.0466
λr 1.3216 1.0637 1.1132 0.7289 1.3235 0.1872
λπ -4.6156 -4.6789 -4.6655 -4.9244 -4.4789 0.2289
λy 0.0223 -0.5522 -0.5930 -1.0610 -0.0260 0.3227
λτ -0.1725 -0.2202 -0.1318 -0.7908 0.1247 0.2885
λxr 18.0439 18.3595 18.5122 17.9321 18.8519 0.8392
λxπ -76.2162 -76.1999 -76.2163 -76.6236 -76.1171 3.1893
λxy -17.4621 -17.4327 -17.4515 -17.9745 -17.0402 0.7816
λxτ 0.0126 0.1011 0.0987 -0.0640 0.3192 0.1232
σν 0.0025 0.0032 0.0031 0.0025 0.0041 0.0005
σ̃π 0.3418 0.4817 0.5082 0.3303 0.6348 0.1106
σ̃y 0.7511 0.6247 0.6539 0.4601 0.7715 0.1073
σ̃τ 0.5445 0.5860 0.5825 0.4727 0.7032 0.0849
σ̃v 0.4116 0.4153 0.4175 0.3039 0.5054 0.0609

Table 6: Parameter estimates for dispersed information model
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F Information-theoretic concepts

In the discussion of the share of information coming from private signals in section 6, I refer

to a number of concepts from information theory, which I detail here without proof; more

details are found in Veldkamp (2011) and Cover and Thomas (2006). As described in section

6, I characterize the extent to which variables are informative using the notion of entropy

- the amount of information required to describe a random variable (Cover and Thomas

(2006)). Entropy is typically expressed in terms of “bits,” i.e., in terms of log base 2 units,

which is convenient because the entropy of a fair coin toss is 1 bit. Intuitively, the entropy

of a random variable in bits is the number of 0 − 1 binary signals required on average to

describe its realization.

The entropy of a normally distributed variable. If x is a normally distributed variable

with variance σ2, its entropy is 1
2

log2(2πeσ2) (Cover and Thomas, 2006, Chapter 8).

Conditional entropy. Conditional entropy H(x|y) is a measure of how much information

it takes to describe x given that y is known (Veldkamp, 2011, Chapter 3.2). It is defined

as the joint entropy of x, y minus the entropy of y, that is H(x|y) = H(x, y) − H(y). The

calculation of the conditional entropy of a normal variable is analogous to the unconditional

case, replacing the variance with the conditional variance (Veldkamp (2011)).

Mutual information. The mutual information of two variables x and y, I(x; y) is the

measure of the amount of information one contains about the other. It can be calculated in

terms of entropies ((Cover and Thomas, 2006, Theorem 2.4.1))):

I(x, y) = H(x)−H(x|y) = H(y)−H(y|x)

68



Appendix

Measure of signal use. Similar to Melosi (2017, 2014), I use the “share” of mutual

information as my characterization of how much information about a variable comes from (a

particular subset) of signals ωred. In particular, the “share” of information about a variable

x used by an agent is:

Sharex = I(x;ωred)/I(x;ωfull)

where ωred is the reduced set of signals (for example, only private signals without the use of

bond prices) and ωfull is the complete set of signals detailed in section 3.3.

In practice, conditional variances needed to calculate mutual information are taken as

particular entries from agents’ state nowcasting error matrix (Σt|t) (see appendix B.2). The

conditional variance of the subset of signals is calculated by solving the filtering problem

of the agent assuming they have a “counterfactual” subset of signals (just as described in

appendix B.2, using A,B,F , C from the actual model solution.

Note that this share is bounded between 0 and 1 because, on average, conditioning must

reduce entropy (Cover and Thomas, 2006, Theorem 2.6.5).
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G Priors

Table 7: Prior distribution of model parameters

Parameter Prior distribution Prior mean Prior s.d. Model
φr Beta 0.5000 0.0500
φπ Gamma 0.5000 0.3000
φy Gamma 0.5000 0.3000
φv Trunc. Normal 0.0000 0.5000
σr Inverse Gamma 0.0050 0.2000
ρyr Normal -1.0000 0.5000
ρyπ Normal 0.0000 0.5000
ρyy Inverse Gamma 0.9000 0.2000
ρyv Trunc. Normal 0.0000 2.0000
σyπ Normal 0.0000 1.0000
σyτ Normal 0.0000 1.0000
σy Inverse Gamma 0.1000 3.0000
στ Inverse Gamma 0.0050 0.3000
ρπr Normal 0.0000 2.0000
ρππ Inverse Gamma 0.9000 0.2000
ρπy Normal 0.0000 0.5000
ρπv Normal 0.0000 2.0000
σπτ Normal 0.0000 3.0000
σπ Inverse Gamma 0.0050 0.3000
ρvv Beta 0.8000 0.1000
σvr Normal 0.0000 3.0000
σvπ Normal 0.0000 3.0000
σvy Normal 0.0000 3.0000
σvτ Normal 0.0000 3.0000
λr Uniform(-100,100)
λπ Uniform(-100,100)
λy Uniform(-100,100)
λτ Uniform(-100,100)
λxr Uniform(-100,100)
λxπ Uniform(-100,-0.001)
λxy Uniform(-100,100)
λxτ Uniform(-100,100)
σν Uniform(0.001,0.02) DI
σ̃π Uniform(0.001,100) DI
σ̃y Uniform(0.001,100) DI
σ̃τ Uniform(0.001,100) DI
σ̃v Uniform(0.001,100) DI
σ̃4 Inverse Gamma 1.0000 3.0000 FI
σ̃8 Inverse Gamma 1.0000 3.0000 FI
σ̃12 Inverse Gamma 1.0000 3.0000 FI
σ̃16 Inverse Gamma 1.0000 3.0000 FI
σ̃20 Inverse Gamma 1.0000 3.0000 FI
σ̃40 Inverse Gamma 1.0000 3.0000 FI
σ̃1
π Inverse Gamma 1.0000 3.0000 FI
σ̃4
π Inverse Gamma 1.0000 3.0000 FI
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H Additional Results, dispersed information model
H.1 Impulse Responses

-0.6

-0.4

-0.2

0
:t

-1

-0.5

0

0.5
gy

-1

0

1
=

0

2

4
v

-1

0

1

2
Short rate

-0.5

0

0.5
:

(1)
t

-0.5

0

0.5

1
g

(1)
y

0

0.2

0.4
=

(1)
t

-2

0

2

4
v(1)

-0.5

0

0.5
:

(1)

t+1jt

-0.5

0

0.5

1
:

(2)
t

-0.5

0

0.5

1
g

(2)
y

0

0.2

0.4
=

(2)
t

-2

0

2

4
v(2)

-0.3

-0.2

-0.1

0
:

(4)

t+1jt

-0.1

0

0.1

0.2
:

(3)
t

-2

0

2

4
g

(3)
y

0

0.05

0.1
=

(3)
t

Rate shock: Macroeconomic Responses

0 10 20
period

-5

0

5

10
v(3)

(a) Response of non-financial variables to monetary policy rule shock, dispersed information. Black
line represents the median response. Dark red indicates 80% posterior credible set. Lighter bands
indicate the 90% posterior credible set. Inflation and interest rates are shown in annualized per-
centage points. The output gap is shown in percentage points. v is scaled by 100.
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(a) Response of non-financial variables to inflation shock, dispersed information. Black line repre-
sents the median response. Dark red indicates 80% posterior credible set. Lighter bands indicate
the 90% posterior credible set. Inflation and interest rates are shown in annualized percentage
points. The output gap is shown in percentage points. v is scaled by 100.
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H.2 State Estimates and Yield Decompositions
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(a) Filtered estimate of inflation target and first three orders of expectation an annualized percent,
dispersed information model.
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H.3 Yield Decompositions at Posterior Mode
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Figure 18: Decomposition of 1 year yields, posterior mode of dispersed information model
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Figure 19: Decomposition of 2 year yields, posterior mode of dispersed information model
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Figure 20: Decomposition of 3 year yields, posterior mode of dispersed information model
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Figure 21: Decomposition of 4 year yields,posterior mode of dispersed information model
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Figure 22: Decomposition of 5 year yields, posterior mode of dispersed information model
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H.4 Wedge Decompositions at Posterior Mode
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I Results, full information model
Table 8: Posterior Estimates, Full Information Model

Mode Mean Median 5th percentile 95th percentile Std. Dev
φr 0.5349 0.5373 0.5350 0.5154 0.5727 0.0170
φπ 0.1771 0.1760 0.1702 0.1098 0.2522 0.0435
φy 0.1178 0.1114 0.1106 0.0908 0.1353 0.0133
φv 0.0283 0.0221 0.0221 0.0128 0.0314 0.0058
σr 0.0020 0.0021 0.0021 0.0019 0.0023 0.0001
ρyr -0.9946 -0.9278 -0.9334 -1.1513 -0.6789 0.1454
ρyπ -0.3899 -0.4031 -0.4077 -0.5526 -0.2503 0.0943
ρyy 0.9525 0.9277 0.9266 0.8835 0.9730 0.0272
ρyv -0.0013 -0.0149 -0.0131 -0.0368 -0.0011 0.0109
σyπ 0.2903 0.3863 0.3868 0.1419 0.6309 0.1509
σyτ 2.6851 2.6387 2.6360 2.2813 2.9877 0.2174
σy 0.0066 0.0068 0.0068 0.0061 0.0075 0.0004
στ 0.0012 0.0012 0.0012 0.0010 0.0013 0.0001
ρπr 0.8326 0.8344 0.8280 0.7050 1.0022 0.0831
ρππ 0.4024 0.4059 0.4057 0.3579 0.4558 0.0299
ρπy -0.1750 -0.1787 -0.1774 -0.2191 -0.1440 0.0235
ρπv -0.0842 -0.0832 -0.0822 -0.1005 -0.0706 0.0088
σπτ -0.1585 -0.1803 -0.1836 -0.3356 -0.0191 0.0956
σπ 0.0040 0.0040 0.0040 0.0036 0.0044 0.0003
ρvv 0.8610 0.8550 0.8533 0.8321 0.8931 0.0177
σvr 9.8381 9.7069 9.7540 9.2463 9.9673 0.2172
σvπ 2.1456 1.9804 2.0660 1.2514 2.5665 0.4220
σvy -2.1201 -2.1669 -2.1473 -2.6129 -1.7968 0.2609
σvτ 0.8711 0.8384 0.7641 0.1380 1.6089 0.4336
λr 1.2591 1.1900 1.2892 -0.3004 2.2988 0.7652
λπ -4.3221 -4.4279 -4.7589 -7.6234 0.1405 2.3402
λy -0.6214 -0.2257 -0.4712 -2.4933 2.3231 1.5115
λτ -0.1198 -0.1123 -0.1139 -0.2503 0.0229 0.0960
λxr 18.3449 18.5892 18.6880 13.1336 23.8793 3.3348
λxπ -76.2955 -77.1364 -76.8624 -80.6353 -73.8037 2.0341
λxy -17.4764 -22.7287 -21.9104 -33.4025 -17.1115 4.4454
λxτ 0.1536 0.0564 0.0529 -1.7520 1.8245 1.0744
σ̃4 0.0012 0.0012 0.0012 0.0011 0.0014 0.0001
σ̃8 0.0011 0.0011 0.0011 0.0010 0.0012 0.0001
σ̃12 0.0009 0.0010 0.0010 0.0008 0.0011 0.0001
σ̃16 0.0010 0.0009 0.0009 0.0008 0.0011 0.0001
σ̃20 0.0010 0.0010 0.0010 0.0008 0.0011 0.0001
σ̃40 0.0014 0.0014 0.0014 0.0012 0.0016 0.0001
σ̃1
π 0.0032 0.0032 0.0032 0.0031 0.0032 0.0000
σ̃4
π 0.0039 0.0039 0.0039 0.0038 0.0039 0.000084
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Figure 23: Decomposition of 10 year yields, full information
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