WHY SHOULD YOU APPLY TO UMASS AMHERST?
SCIENTIFIC REASONS

• # 25 public university Chemistry department in the U.S.
• $10.7 million in external research funding annually.
• $95 million instruments in state-of-the art core facilities.
• 4 AAAS Fellows.
• 26 professors, 140 graduate students, 21 postdocs. Small groups, more attentions.
• We are in need of physical chemistry students!
• Great collaboration opportunities within UMass Amherst and industry.
• Strong polymer science and engineering, chemical engineering, and computer science.
• Most Distinguished Teaching Awardees on campus.
• 4 papers published on average during PhD.
• Amazing alumni network.
• Great job opportunities in Massachusetts, the global biotech and pharma hub.
NON-SCIENTIFIC REASONS

• UMass Amherst has the fastest rising rank in the U.S. (from 52th in 2010 to 26th in 2020)!
• UMass Amherst has the \#1 dining hall in the U.S. (Princeton Review)!
• UMass Chemistry has a strong graduate student association!
• UMass provides strong student support for starting companies.
• New England area is famous for maple leaves in the fall and skiing in the winter!
• Massachusetts is open to different cultures! (We have a Chinese-English dual school!)
• Amherst is affordable in the Greater New York and Greater Boston Area!
• You are not paid much less than students at MIT!
WHY SHOULD YOU APPLY TO UMASS AMHERST?
APPLICATION MATERIALS

• Online application form
• Research interest form (Make sure you write down names of professors!)
• Personal statement / State of purpose
• Recommendation letters
• Resume / CV
• NO GRE this year!
• TOEFL or IELTS
• Transcripts
• $80 fee
CONTACT INFORMATION

Zhou Lin, Ph.D. (she/her/hers)
Assistant Professor of Chemistry
University of Massachusetts Amherst
158C Goessmann Laboratory
686 N. Pleasant St.
Amherst, MA 01003
413-545-2777
zhoulin@umass.edu

https://elements.chem.umass.edu/zlingcgroup/
WE ARE LOOKING FOR QUANTUM CHEMISTS

1. UV light makes one rotor blade spin 180 degrees. This creates tension in the molecule.

2. The tension is released when one rotor blade snaps over the other. Backward rotation is prevented.

3. UV light leads to another 180-degree rotation.

4. The temperature is raised, which makes the methyl groups snap over the rotor blades. Backward rotation is prevented.
YOUR APPLICATIONS ARE WELCOMED!