
Yale University Department of Music
 

 
Some Non-Isomorphisms between Pitch and Time
Author(s): Justin London
Source: Journal of Music Theory, Vol. 46, No. 1/2 (Spring - Autumn, 2002), pp. 127-151
Published by: Duke University Press on behalf of the Yale University Department of
Music
Stable URL: https://www.jstor.org/stable/4147679
Accessed: 26-10-2018 08:46 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Yale University Department of Music, Duke University Press are collaborating with
JSTOR to digitize, preserve and extend access to Journal of Music Theory

This content downloaded from 137.22.94.231 on Fri, 26 Oct 2018 08:46:45 UTC
All use subject to https://about.jstor.org/terms



 SOME NON-ISOMORPHISMS

 BETWEEN PITCH AND TIME

 Justin London

 1. Claims of Isomorphism

 The idea that a single principle governs each and every musical para-
 meter goes back at least to the Pythagoreans, who believed that melody,
 harmony and rhythm were all ruled by ratio and proportion. Perhaps ever
 since, western musicians and music theorists have sought universal prin-
 ciples of musical structure. At bottom of such claims is the belief that
 pitch and time are somehow isomorphic. Faith in the isomorphism of pitch
 and time has continued through the twentieth-century and to the present.
 I begin with a few examples.

 Isomorphism was an attractive idea to many twentieth-century com-
 posers. Messiaen (1956, 13) catalogued symmetrical pitch patterns in his
 "modes of limited transposition" and found analogous symmetries in his
 non-retrogradeable rhythms. Similarly, Boulez draws the distinction be-
 tween "smooth" versus "striated" varieties of space (for pitches) and time
 (for durations): "Pulsation is for striated time what temperament is for
 striated space; it has been shown that, depending on whether a partition
 is fixed or variable, defined space will be regular or irregular; similarly,
 that the pulsation of striated time will be regular or irregular, but system-
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 atic" (1971, 91). Stockhausen (1959) goes much further, for if pitches and
 rhythms both involve periodic phases between successive impulses, then
 both are instances of the same basic phenomenon, but in different octaves.
 Indeed, Stockhausen drew explicit parallels between the overtone series
 for pitch and categorical values for duration. In the realm of 12-tone com-
 positional theory and method there have been various attempts at trans-
 lating pitch and pitch-class relationships to the temporal domain-indeed,
 this is a basic tenet of multi-serialism. Thus, to choose an obvious exam-
 ple, Babbitt (1972) gives a systematic account of how row elements and
 intervals can (as well as cannot) be related to metric position and relative
 duration.

 Shifting to more recent music theory, Lewin has discussed pitch-time
 isomorphisms in specific analytical contexts (1981) and as a feature of
 his well-known models for interval systems (1987).' The notions of con-
 sonance and dissonance have been applied to metrical relationships, as in
 Yeston 1976 and (especially) Krebs 1987, 1997. Finally, Pressing (1983)
 has explicitly claimed that there is a cognitive isomorphism (grounded in
 musical substance) between the interval pattern of the diatonic scale and
 certain non-western rhythmic patterns.

 At first blush the intuitions of these composers and theorists regarding
 pitch and time seem quite reasonable. Individual note onsets take specific
 locations in both measured and unmeasured time, just as individual pitches
 take discrete locations within the pitch continuum and as scale steps. Sim-
 ilarly, both relative durations and the intervals between pitches can be dis-
 cussed in terms of ratios or proportions. Pitch classes, beat classes (in an
 established meter) and scaled durations are all amenable to set and/or
 group-theoretic treatment. When the same ratios and patterns crop up in
 both tonal and temporal domains our suspicions are naturally aroused-
 could the recurrence of a 2-2-1-2-2-2-1 pattern be a sign of some deep
 parallel between scales and meters?

 In a word, no. In the following pages I will present spatial representa-
 tions-graphs-of pitch and metric systems, starting with familiar ton-
 netz representations of pitch and pitch-class space. Using mathematical
 graph theory, I will show that pitch/pitch-class space and an analogous
 "meter/tempo space" are fundamentally non-isomorphic. This non-
 isomorphism stems from the fact that there are no temporal analogs
 to octave and enharmonic equivalence and that there are no tonal analogs
 to various limits on our temporal perception and acuity. These non-
 isomorphisms in the spatial representations for pitch and meter call into
 question the validity of broader claims about the unity of pitch-time
 relationships.
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 2. Mapping PC Space

 Recent work in neo-Riemannian tonal theory has produced sophisti-
 cated representations of tonal space. Starting with the graphic arrays or
 tonnetze developed by Riemann and Oettingen, a number of theorists
 have developed spatial representations of pitches, triads, and tonal dis-
 tance that is neutral with respect to any particular chord progression or
 key.2 Tonnetze may thus be viewed as basic substrates to various chord
 and key relationships. Hyer (1995, 102) reproduces the following figure
 from Riemann (1914-15):

 / \J berte er%) dis Yais eis Yhis fisis cis is

 //
 befrzn rls ci is ae. s -( / .,,/zen\, / dh fis cis c is

 (Schli eQuin nreih es b f C r d a e

 ces ges des as 4 s 5 E  terterzn)
 asas eses neses Ts ces ges aes as 2.Urne n

 feiMsceses \geses ese sas eses e Fews 3.'U zrer nre~

 Figure 1. Riemann's Tonnetz (1914-15), from Hyer 1995,
 figure 1, p. 102

 Of this diagram Hyer says, "It is as if, using C as ground zero, Riemann
 has taken the combinatorial intervals of the Klang and strewn them in all
 imaginable directions, mapping out an abstract terrain of harmonic con-
 sonances" (101). Hyer also notes: "A crucial feature of the grid is its
 extreme chromaticism: fig. 1 represents an unbounded conceptual area
 containing an infinite number of different pitches, no two of which are
 identical. Because Riemann assumes just intonation, the lattice is infi-
 nitely extensible on all sides" (105). Hyer then re-imagines Riemann's
 space under the constraints of enharmonic and octave equivalence, and
 notes that in so doing Riemann's "tabular representation of tonal rela-
 tions gives rise to remarkable algebraic and topological properties"
 (106). The result is the following figure (Hyer's fig. 3, 119):
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 pl 1 p3 X2 p5 A3 p2 X4

 81 (9,+) (4,+ +,+) (6,+)83
 p6 (9,-) (4,-) (1,-) (6,-)

 82 (5,+) (0,+) (7+) (2,+) pl 81
 p>4 (5,-) (0,-) (7,-) (2,-)

 83 (1+) (8.+) (3,+) (10,+) p6 82

 11 p3 ,2 pS 5 3 p2 X4 p4

 Figure 2. Hyer's Tonnetz of P5, M3 and m3 cycles,
 from Hyer 1995, figure 3, p. 119

 Hyer notes that when one connects the edges in the manner shown in the
 diagram, the result is a doughnut or torus. Two dimensions are not ade-
 quate for mapping the spatial relationships among pitch classes in a ton-
 netz; to capture the continuities generated by enharmonic and octave
 equivalence requires at least three.

 More recently Cohn (1997, 10) has produced a generalized form of
 the tonnetz and then has noted the special properties of the triadic tonnetz
 in the context of 12-tone equal temperament. Cohn's abstract tonnetz is
 given in figure 3.

 -2x + 2y -x + 2y 2y x + 2y 2x + 2y

 -2x + y -x + y y- x + y- 2x + y

 -2x -x 0 x 2x

 I/
 -2x-y -x-y -y x-y 2x-y

 -2x- 2y -x- 2y -2y x- 2y-2x - 2y

 Figure 3. Cohn's Abstract Tonnetz, from Cohn 1997, figure 6, p. 10
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 Like Hyer, Cohn notes that "if x and y [Cohn's variables for horizontal
 and vertical relationships in the tonnetz] are assigned to acoustically pure
 intervals (as in Euler, etc.), or to intervals in pitch-space, then the struc-
 ture implicitly projects into an infinite plane. The realizations [of the ton-
 netz] that will hold our focus are generated by equally tempered intervals
 in some modular system, where the modular congruence represents
 octave equivalence. In such interpretations, both x and y axes become
 cyclic rather than linear, and the plane. .. therefore projects into itself as
 a torus" (Cohn 1997, 11-12).

 Music theorists are not alone in recognizing the toroidal shape of tonal
 space. Researchers in music perception and cognition have empirically
 measured the goodness-of-fit for notes and chords in a tonally primed
 context, and they too have mapped tonal space onto the surface of a torus.
 Krumhansl and Kessler (1982) give the following representation of inter-
 key distances:

 f# d bbd
 I I

 DI/C# A F DI/C#
 I C# a / f

 Relative I E Relat C Parallel Ab
 I g# e c

 / Circle of fifths

 S B G EI
 ekdi b g el d#

 I Fit D B

 I ft d b -'
 Figure 4. Krumhansl and Kessler's (1982) map of interkey distances,

 from Lerdahl 1988, figure 26, p. 342.

 Nor were they the first to note the three-dimensional nature of tonal
 space. The cognitive psychologist Longuet-Higgins (1962, 280) lays out
 his own version of a two-dimensional tonnetz and also notes that the

 musical space is "three dimensional if one gives due respect to the
 octave" (i.e., noting how his mapping will wrap into a cylinder).3

 Lerdahl (1988), strongly influenced by Krumhansl and Kessler, as well
 as by the work of Deutsch and Feroe, has produced a somewhat different
 mapping of tonal space. Lerdahl notes: "There are two general problems
 with current tonal pitch spaces: they are too symmetrical and they address
 only one level of pitch description" (Lerdahl 1988, 317). For as can be
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 seen in figure 4, there is not a constant spacing between adjacent keys,
 but varying degrees of relative proximity. This is in part because Krum-
 hansl and Kessler have not given a generic map of tonal space, but rather
 one that is related to and generated by a particular tonic. Lerdahl also takes
 this approach, as he develops a mapping of tonal distance that is sensitive
 to differences among structural levels, treating pitch proximity, triadic
 proximity, and tonal proximity as separate but interrelated distance met-
 rics. Ultimately, however, Lerdahl produces a mapping of chord space
 which is symmetrical and which is toroidal:

 vii? ii IV vi I iii V
 iii V vii? ii IV vi I
 vi I iii V viio ii IV

 ii IV vi I iii V viio

 V viio ii IV vi I iii

 I iii V viio ii IV vi

 IV vi I iii V vii? ii

 Figure 5. After Lerdahl's representation of chordal space (Lerdahl
 1988, figure 13, p. 326; see also Lerdahl 2001, figure 2.14, p. 57)

 Lerdahl then develops a somewhat different mapping for harmonic
 regions. He then combines them, and notes that "at this point, the geom-
 etry becomes hard to visualize [as it is a hypertorus] ... so I will not
 attempt it" (Lerdahl 1988, 332).

 Leaving Lerdahl's hyper-torus aside for the moment, we can give the
 following summary description of Tonnetz representations of tonal space:

 * In a tonnetz there is a uniformity of relationships from one loca-
 tion to another-all of the links form the same pattern, generating
 a uniform space.

 * Topologically no location in the tonnetz is privileged, though in
 applying the tonnetz to real musical surfaces, a particular location
 assumes the role of "tonic" such that other locations are heard

 relative to its location (at least as long as that particular tonic
 holds sway).4

 * Given enharmonic and octave equivalence, the tonnetz requires at
 least 3 dimensions (i.e., a toroidal surface) for a representation
 which preserves all of the relationships between adjacent tonal
 elements.
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 3. A Graph Theory Interlude.

 A tonnetz is a kind of graph, a finite set of one or more vertices con-
 nected (or not) to each other by a set of zero or more edges. Here are a
 number of graphs:

 Figure 6. Some basic graph types:
 A. Simple unconnected graph;

 B. A cyclical graph;
 C. The bipartite graph K3, 3, also known as the utility graph;

 D. The complete graph K5

 Figure 6A is a graph, although not a continuous one. It consists of seven
 vertices and four edges. We can specify edge-vertex relations by giving
 the degree of each vertex in a graph, that is, the number of edges that
 meet at each vertex. So in figure 6A there are five vertices of degree 1,
 one vertex of degree 2, and one vertex of degree 3.

 Figure 6B is a cyclical graph. In a cycle one has the same number of
 edges and vertices, and each vertex is of degree 2. Figure 6C is a bipar-
 tite graph K3, 3 (K indicates completeness, and "3, 3" indicates the num-
 ber of elements in each half of the bijection), as it shows how one set of
 elements relates to another-in this case, each of the three vertices on top
 connect to all three vertices on the bottom. It is also known as the utility
 graph, as it illustrates a classic problem of whether three utility compa-
 nies can hook up their services to three houses without crossing their pipes
 or wires (they cannot, as we shall see). Finally, figure 6D is a complete
 graph, here K5. A complete graph is defined as the graph of some set of
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 vertices in which each vertex is connected to every other. Thus for a com-
 plete graph consisting of N vertices, each vertex will be of degree N-1.

 Two graphs are isomorphic if they share the following properties:

 (a) they have the same number of vertices,
 (b) they have the same number of edges,
 (c) the same distribution of degrees (for each vertex in each graph)
 (d) the same number of "pieces" in each graph

 The first two requirements should be obvious, since two isomorphic
 structures each need to be comprised of the same number of elements.
 The last two insure that those elements stand in the same relationship(s)
 to each other. It does not matter whether the edges are straight or curved,
 nor does the relative spacing of the vertices matter. Here are some more
 examples:

 Figure 7. Isomorphic and non-isomorphic graphs:
 A. Complete Graph K4;

 B. Also K4;
 C. Connected graph containing 6 vertices, all of degree 2;

 D. Non-connected graph containing 6 vertices, all of degree 2

 Figure 7A is the complete graph K4-a set of four vertices, each con-
 nected to each other. Figure 7B is also K4, with one edge drawn "outside
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 the box." Trudeau makes the following suggestion in regards to envi-
 sioning isomorphisms:

 Think of a graph as a network of steel balls (vertices) and rubber bands
 (edges). We assume that the balls will remain in whatever position we
 place them and that the rubber bands will never break. Under this inter-
 pretation, isomorphic graphs are graphs that can be arranged to look like
 one another."5

 One other thing to note: edges can "pass through each other" when you
 are reconfiguring a graph (if we stipulated that they could not, we would
 be talking about knot theory). Therefore, we simply lift the left-upward
 diagonal in figure 7A, and stretch it outside of the box to create 7B. Both
 7A and 7B have the same number of vertices, the same number of edges,
 all vertices are of the same degree, and both are in one piece. 7A and 7B
 are isomorphic. In Figures 7C and 7D we have a pair of graphs that have
 the same number of vertices, the same number of edges, and all vertices
 are of the same degree, but they are not isomorphic. Notice that 7C is in
 one piece-it is possible to "walk" from one vertex to any other vertex
 via edge connections, while 7D is in two pieces-if you are on the upper
 triangle, you can walk to two other vertices, but you cannot follow an
 edge to the lower triangle. Another way to put it is that 7D is a graph that
 contains two subgraphs, here each a 3-cycle, but there are no common
 edges between each subgraph.

 Figures 7A and 7B (that is, two versions of K4) bring up another im-
 portant aspect of graph theory, namely planarity. A graph is planar if it is
 possible to draw it in a two-dimensional plane without edge-crossings.
 Because we can draw K4 without crossing the diagonals, it is planar. K3,
 3 and K5 are non-planar.6 If one graph is planar, and another is non-
 planar, they cannot be isomorphic (though subgraphs of each can be).

 Planar graphs give particular definitions to the plane they inhabit. Here
 is a definition from Trudeau: "When a planar graph is actually drawn in
 a place without edge crossings, it cuts the plane into regions calledfaces
 of the graph" (Trudeau 1993, 99). The plane itself is counted as one face.
 Thus the planar drawing of K4 (figure 7B) cuts the plane into four faces-
 two triangles, the irregular space between the exterior edge and the south
 and east sides of the square, and the plane itself.

 We have already noted the difference between 7C and 7D. Here is a
 more formal definition of that difference, modeled after Trudeau (p. 97):
 A walk in a graph is a sequence A1, A2, A3 ... An of not necessarily dis-
 tinct vertices in which A1 is joined by an edge to A2, A2 by an edge to A3,
 and so on, through An. If every pair of vertices in a graph is joined by a
 walk, then that graph is said to be connected. Thus in 7D, there is no walk
 which joins opposite points of the star.

 When we combine planarity and connectivity, the result is another
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 means of characterizing graphs and graphic similarities: "A graph is
 polygonal if it is planar, connected, and has the property that every edge
 borders on two different faces" (Trudeau 1993, 100). Polygonal graphs
 form regular or irregular polygons in the two-dimensional plane. All of
 the graphs in figure 7 are polygonal. The graph in figure 6A is not polyg-
 onal, both because it is not connected and because all of its edges border
 on the same face (i.e., they are all "surrounded" by the plane itself). Most
 tree diagrams are not polygonal for this latter reason. If figures 6C and
 6D were planar they would be polygonal, as they are connected and every
 edge borders on two different faces.

 We have now gone, though rather quickly, through enough graph the-
 ory to give a fairly thorough characterization of various tonnetz repre-
 sentations. Riemann's original conception of the tonnetz is almost polyg-
 onal: it is connected, every edge borders on at least two faces, and it is
 planar. The reason we must qualify it as "almost" polygonal is that by def-
 inition a graph is comprised of a finite set of vertices (and hence edges),
 whereas one can extend the Riemannian tonnetz ad infinitum. When

 we include octave and enharmonic equivalence, the graph becomes non-
 planar.

 Here is a way to get a grasp of the non-planar aspects of the tonal torus.
 Look again at figure 3, Cohn's "parsimonious tonnetz." The vertical axis
 is for major thirds, the horizontal for minor thirds. If we wrap these axes
 to capture PC equivalence, the major-third cycles can be thought of form-
 ing "loops" which define the cross-section of a cylinder, and the minor-
 third cycles link the four major-third cycles, joining the ends of the cylin-
 der to form the torus. We can then add the fifth cycle-the diagonal-as
 a line (more precisely, a connected series of edges) that makes three inter-
 leaved spirals around the torus, ending on the point where it started. Fol-
 lowing the "fifth spiral" around the torus takes once through each and
 every vertex just once-this is known as a "Hamilton walk" through the
 vertices of a graph. Better known is the "Euler walk" through a connected
 graph: a path which goes through each and every edge just once. Because
 the tonal torus is a connected regular graph, in that every vertex is of the
 same degree, and since that degree is even (in our case, 6, since every ver-
 tex connects two major thirds, two minor thirds, and two perfect fifths),
 the tonal torus also has an Euler walk.

 As was noted above, Lerdahl takes an alternative approach to his rep-
 resentation of tonal space, one which privileges diatonic relationships.
 We can show that even without taking chromatic additions to the diatonic
 set into account, the result is non-planar. Let us start with a major dia-
 tonic collection, using C as a tonal generator. Figure 8 represents all of
 the possible intervallic connections between those seven PCs in the form
 of the complete graph K7:
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 B D

 G F

 Figure 8. K7 representation of diatonic interval set

 Figure 8 contains diatonic adjacencies (the perimeter of the heptagon),
 thirds, and fifths. It thus contains all of the diatonic "alphabets" used by
 Lerdahl to measure tonal distances relative to a given tonic (1988, 322-
 27). The graph in figure 8 is connected, regular (by definition, in K7 every
 vertex is of degree 6), and non-planar. Its non-planarity can be proven in
 the following manner. Every complete graph of Kn also contains as sub-
 graphs of the complete graphs K(n-1), K(n-2) ... through K1 (K1 is the
 graph which consists of but a single vertex). Since every complete graph
 Kn consists of n vertices and n(n 1) edges, and (by definition) each ver-

 2

 tex is connected to every other, then if one erases one vertex from Kn, and
 the attendant edges that connect the (now missing) vertex to the other ver-

 tices, one has a graph with: n(n-1) -(n - 1) -2(n- 1) n2 -3n+2
 2 2 2

 (n - 2)(n -1) edges and n-1 vertices, i.e., a complete graph K(n-1). Thus
 2

 K7 contains K6, and mutatis mutandis, K6 contains K5. Therefore K7
 contains K5. K5 has been shown to be non-planar. Therefore K7 is also
 non-planar; it in fact also leads to "a pleasant toroidal embedding" (West
 1996, 281), given in figure 9A. Notice here that the four comers of the
 planar representation of the K7 correspond to a single point on the sur-
 face of the torus. Notice also that figure 9A has obvious similarities to the
 structure of the tonnetz, stemming from the fact that in both graphs each
 vertex is of degree 6. Figure 9B is Lerdahl's toroidal representation of
 chordal space, a reconfiguration of figure 5 (Lerdahl 2001 figure 2.15,
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 1 1

 1 I

 1~----- -- - ------

 - - - - - - -

 Figure 9A. K7 representation on the surface of a torus,
 from West 1996, p. 281

 vii viio

 Siii V vii,0 iii - _ __V --vii0 vi I vi I

 vii ii IV ' viio.- ii - I

 -- vii' --viio

 Figure 9B. Toroidal representation of chordal space,
 from Lerdahl 2001, fig. 2.15, p. 58

 58), that indicates various traversals from chord to chord. Its similarities
 with the toroidal representation of K7 are obvious.

 4. Mapping Metric Space

 As stated earlier, the tonnetz forms a substrate to various triadic and
 tonal relationships, and as such is an excellent representation of the "space"
 in which chords and keys "move." What would be the best temporal ana-
 log to the toroidal tonnetz? I would posit that it should be a representa-
 tion of metric relationships, as a meter is a similar temporal substrate for
 our experience and understanding of musical time, and meter often gives
 temporal definition to durational patterns and relationships. Just as tonal
 systems (i.e., twelve-tone equal temperament) and scales define and con-
 strain pitch-to-pitch intervals and larger melodic constellations, so too do
 metrical systems define and constrain particular rhythmic motives and
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 their possible arrangements. Thus we seek to graph a meta-metric system
 which serves as the substrate to a variety of possible meters (and hence
 durational relationships).

 An obvious way to start would be to try and construct a temporal ana-
 log of a Riemannian tonnetz, a "zeitnetz," as in figure 10:

 96 144 216 324 486

 32 48 72 108 162 243

 16 24 36 54 81

 51/3 8 12 18 27 401/2

 22/3 4 6 9 131/2

 8/9 11/3 2 3 41/2 63t4

 4/9 2/3 1 11/2 21/4

 Figure 10. Zeitnetz representation of duple and triple
 metric relationships

 Figure 10 is a partial representation of such a network, in which each ver-
 tex represents a particular periodicity, and each connects to four other
 vertices. So, for example, the vertex labeled "12" connects to two larger
 periodicities (24 and 36) as well as two smaller periodicities (4 and 6).
 Duple relationships are mapped on the diagonals that extend downward
 from left to right, while triple relationships are mapped on the diagonals
 that extend upward from left to right. This zeitnetz recursively maps the
 basic metric relationships of binary versus ternary beat orderings (duple
 versus triple measures) and binary versus ternary beat subdivisions (sim-
 ple versus compound time). This network is simply the set of all values
 of form 2m x 3n where m and n are integers.
 Like mappings of tonal space, this matrix is uniform-the relationship
 from any vertex to its adjacent vertices is constant (each vertex is of degree
 4). As such, all levels of structure are "metrically alike" in this matrix,
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 and while I would imagine that Stockhausen might find this attractive, I
 would argue that there are important distinctions between metric levels
 that a mapping of the metric space should capture. Certain levels-the
 measure and especially the tactus-are more essential than others. If a
 layer of subdivision or hypermeter should drop out, we still have metric
 and temporal continuity, whereas if the beat disappears, there is a palpa-
 ble lack of motion. Thus the beat or tactus serves as the fundamental sub-

 strate for any metric system.7
 Thus the uniformity of figure 10 is a problem, and hence my first

 attempt at mapping metric space, what I shall term M-space: a concep-
 tual space that lays out the hierarchic relationships among the most com-
 mon meters in western tonal music:8

 9/2

 3/2 9/4

 4/4--------------- -1

 29M 31 3n

 - - - - - -

 MN

 Figure 11. Graph (rooted tree) of M-space
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 As in figure 10, we have a configuration of vertices and edges. Each ver-
 tex in M-space indicates the organization of a given level of a musical
 time, with the beat level (for convenience, represented by a quarter-note)
 serving as the origin for the space. This reflects the centrality of the beat
 level. Each vertex in this graph represents a level of periodic articulations
 that is linked to higher and lower levels in terms of either 2:1 or 3:1 ratios.
 The horizontal edges represent binary relationships, while the vertical
 edges represent ternary relationships. The four basic metric types (duple
 versus triple and simple versus compound) are enclosed in the dashed
 box. Vertices that involve concatenations of beats and larger units are
 measures and hypermeasures (the upper two quadrants), and vertices that
 involve fractions of the central beat are subdivisions (the lower two quad-
 rants). You will notice that the upper two quadrants contain most of stan-
 dard time signatures in western music.

 In terms of mathematical graph theory, we have a rooted tree whose
 central vertex is of degree four, with all other vertices are (at least in prin-
 ciple) of degree three-the gray vertices are used to indicate overlapping
 hierarchic configurations (for example, 6/2 vs. 12/4) which have identi-
 cal periodicities, a bit of fudging in order to preserve the "vertical =
 ternary" and "horizontal = binary" relationships for the edges. Nonethe-
 less one can draw this tree without edge crossings, and hence it is planar.

 This representation of M-space also emphasizes the sharp perceptual
 differences between duple and triple meters and binary versus ternary
 subdivisions. Clarke (2000) summarizes the phenomenon that he and
 others have studied:

 The data ... showed the characteristic features of categorical perception
 (a disjunction in the identification function as subjects switch from one
 perceptual category to another, coupled with a peak of discriminability
 when pairs of stimuli are taken from either side of the category boundary),
 together with a metrical effect causing the category boundary to shift so
 as to make a larger proportion of the stimulus continuum consistent with
 the prevailing metre. In simple terms, the effect of the metrical context is
 to cause subjects to perceive potentially ambiguous rhythms in a fashion
 which supports and confirms the prevailing metre.9

 Thus the separation between the duple and triple branches of figure 11
 reflects how we construe metric systems in terms of perceptual categories.

 How many different metric configurations are represented figure 11?
 First, we must give a minimal definition for a single meter. After Yeston
 1976 I will stipulate that a meter requires at least two coordinated peri-
 odicities. I will further stipulate that at least one of those levels must be
 the central beat. Meters may vary from very thin (a two-tiered duple or
 triple ordering of beats) to very thick (e.g., 6/2 comprised of running 16th
 sextuplets!). Thus the answer to the question posed above is 195, as it is
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 the product of all of the measure vertices (including the central beat) times
 all of the subdivision vertices (also including the central beat level), minus
 one (to eliminate mapping the central beat onto itself). Though this ques-
 tion may seem trivial, as it turns out it is not. While one could add addi-
 tional edges and vertices to figure 11, the limitations of human temporal
 perception serve as a significant constraint on the extent of M-space. Thus
 while formally we may imagine an M-space that is topologically open,
 extending ad-infinitum, we are able to perceive only a small region of its
 extended terrain. Just as our perception of octave equivalence determines
 the shape of PC space, so too do our perceptual and cognitive capacities
 influence the shape and extent of M-space.

 In his influential textbook, Peter Westergaard (1975, 274) gave a
 "chart of useful tempos," given as figure 12.

 Number of

 beats/minute IOI between beats Comment

 30 2 seconds too slow to be useful

 42 1.414 seconds very slow
 60 1 second moderately slow
 84 700 milliseconds moderate

 120 500 milliseconds moderately fast
 168 350 milliseconds very fast
 240 250 milliseconds too fast to be useful

 Figure 12 (After Westergaard 1975, p. 274)

 To Westergaard's chart I have added timings in seconds and milliseconds.
 Since Westergaard mentions only beats, one must make some extrapola-
 tions about the timing values of higher and lower metric levels. Nonethe-
 less, his comments accord nicely with the findings of music psycholo-
 gists: one cannot metrically track (that is to say, count) temporal events
 that are faster than about 80-100 milliseconds (Westergaard's "too fast to
 be useful" tempo) and 2 seconds is about the outer limit for temporal con-
 tinuity.'0 It should thus be obvious that tempo changes-chances in the
 duration of the central beat-will have an effect on the scope and effect
 of M-space. When we give a specific tempo value to the central beat rate,
 we may now speak of Meter/Tempo space (M/T space). Graphing M/T-
 space allows us to see the systematic interaction(s) between meter, tempo,
 and various perceptual and cognitive thresholds.

 Figure 13 shows the various timing relations between vertices at a
 tempo of 92 beats/minute (a 650ms duration). As one can see, the longest
 periodicity is 12 seconds, while the shortest is 24 milliseconds-and both
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 Figure 13. Graph of M/T space w/650ms beat duration

 of these lie outside the "metric envelope" of our perceptual and cognitive
 capacities. On this example I have written temporal contour lines that
 mark the edges of metric envelope. First, note also that some nodes lie
 near the edge of the envelope (81ms and 5.9 sec). While it may be possi-
 ble to hear these metric relationships, it may require more attentional
 effort as they fall near a perceptual or cognitive limit. As one also might
 expect, the number of possible configurations in this tree is skewed
 toward 2:1 ratios. Note also that at this tempo full measures of both duple
 or triple time fall under the two-second threshold, suggesting that down-
 beats in either meter will seem strongly connected, and inviting higher
 levels of metric structure." The metric envelope also truncates various
 branches of the graph, so that we now have a graph with a central vertex
 of degree four, intermediate vertices of degree three, and terminal ver-
 tices of degree one.

 143

This content downloaded from 137.22.94.231 on Fri, 26 Oct 2018 08:46:45 UTC
All use subject to https://about.jstor.org/terms



 MM = 40

 12/

 03

 n 13 1n / 3/

 S 1 375375 750 500 250 2125

 ------------- --l

 125 250 167 008

 18

 MM - 80

 4.5

 r----------------

 4/4 / 2/2/4 3 /4 /6/ 4 /2

 S 3 2.25 4.5

 -- ------------

 MM = 140

 r -------------- --
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 Figure 14 shows three graphs of M/T space at various tempos (vertices
 outside the metric envelope have been omitted for clarity). As one would
 expect, at slower tempos there are limits to the number of levels above
 the beat (as they simply become too long), while, conversely, at faster
 tempos there are limits on the extent of metric subdivision (as the subdi-
 visions simply get too short). Each graph is yoked to a beat rate that is
 typical of a particular tempo, and so the three graphs illustrate the metric
 differences between these six distinct tempo categories.

 What is perhaps most interesting is that the number of possible meters
 in each graph of M/T space is not constant, nor is there a simple linear
 relation between the number of possible meters in any graph of M/T space
 and tempo:

 # of vertices

 Beat Rate within the Periodicities in the

 (MM/ms) metric envelope MxSD-1 600-700ms range?

 40 (1500) 12 3x10-1 = 29 N
 50 (1200) 13 4x10-1 = 39 Y
 60 (1000) 11 4x8-1 = 31 N
 72 (833) 11 6x6-1 = 35 N
 80 (750) 11 6x6-1 = 35 N
 86 (700) 11 6x6-1 = 35 Y
 92 (650) 10 5x6-1 = 29 Y
 100 (600) 12 7x6-1 = 41 Y
 108 (555) 11 8x4-1 = 31 N
 120 (500) 11 8x4-1 = 31 N
 140 (428) 13 10x4-1 = 39 N
 160 (375) 13 10x4-1 = 39 N
 180 (333) 12 10x3-1 = 29 Y
 200 (300) 12 10x3-1 = 29 Y

 Figure 15. Table of the number of nodes in M/T space
 relative to various tempos

 The left-hand column gives the beat rate in the musically familiar term of
 beats per minute. The next column lists number of vertices present, and
 this varies only between 13-15. In order to see how tempo changes really
 effect the extent of M/T space, one must take note of the multiplicative
 relationships between vertices above versus below the central beat, as
 indicated in the "M times SD minus ONE" column. Note here the wider

 variation, from 29 to 41 metric vertices at various tempos. The last col-
 umn tracks another interesting aspect of tempo change: at some tempos,
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 there are no periodicities present in the range of maximal pulse salience,
 approximately 600-700ms (see Parncutt 1994). If this periodicity is as
 important as psychologists and historical sources have suggested, espe-
 cially in relation to the kinesthetic and somatic aspects of meter, then
 metric hierarchies which lack a "resonance" in the 600-700ms range will
 have distinct perceptual and hence musical qualities. An examination of
 M/T space thus reveals that there may be systemic reasons for our cate-
 gorical preferences for some tempos and not others.

 Small changes in tempo can have a large effect on the number of ver-
 tices in M/T space:

 # of vertices

 Beat Rate within the Periodicities in the

 (MM/ms) metric envelope MxSD-1 600-700ms range?

 86 (700) 11 6x6-1 = 35 Y
 88 (682) 11 6x6-1 = 35 Y
 90 (667) 11 6x6-1 = 35 Y
 92 (650) 11 6x6-1 = 35 Y
 96 (625) 12 7x6-1 = 41 Y
 100 (600) 12 7x6-1 = 41 Y
 108 (555) 11 8x4-1 = 31 N
 120 (500) 11 8x4-1 = 31 N

 Figure 16. Table which tracks changes in the number of nodes in
 M/T space as tempo shifts from 86-120 beats/minute

 This is an overall tempo change of less than 20%-and in this range a
 tempo change of less than 7% is often not even noticeable (around 7% is
 the "just noticeable difference" for durational changes in the 250ms to 2
 second range). Yet due to the multiplicative and divisive properties of the
 connections between vertices, these small changes are magnified in terms
 of the extent of M/T space.

 5. Conclusion:

 M/T Space and Various Tonnetze are Non-Isomorphic

 It is hoped at this point that the principal argument of this paper should
 be fairly obvious to the reader: metric space is planar, tonal space is non-
 planar; therefore the two spaces are non-isomorphic. And if the two
 spaces are non-isomorphic, then there are fundamental problems in try-
 ing to map elements or relationships (i.e., functions which employ those
 elements) from one space to another.

 Differences beyond planarity versus non-planarity may also be dis-
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 cerned: the tonnetz is regular, with all vertices of the same degree; the
 graph of M/T space involves vertices of different degrees. The many ver-
 tices of degree 1 in M/T space create a large number of "dead ends" in
 the graph, and so it is not possible to have either an Euler or a Hamilton
 walk through M/T space. M/T space is a rooted tree, and even if we
 acknowledge Lerdahl's concerns regarding the role of a tonic in generat-
 ing a tonal space, the root of a rooted tree is not the same as a tonic in
 tonal space. That one vertex serves as the origin of a tonnetz does not
 change the uniformity of the structure of the network itself (and indeed,
 various marvelous effects of chromatic harmony depend on this to move
 smoothly to "distant" chords and keys).

 Finally, changing the tempo changes both the shape and extent of M/T
 space. Changing one's initial tonic does not alter the number of vertices
 or edges in the graph of tonal space-wherever you start, there are
 always the same number of tonal possibilities, the same number and kind
 of pathways to other chords or pitch-class complexes (i.e., all edge-
 relationships remain constant). Similarly, changing one's initial tonic
 does not change the degree of any other vertex in the tonnetz (i.e., all ver-
 tex relationships remain constant). In contrast, changing tempos does
 change the number of edges and vertices in the graph of tonal space, as
 well as the relationships among them, for example, as higher levels of
 subdivision that are vertices of degree 3 at slower tempos lose edges (and
 hence change degree) as the tempo increases.

 From the outset Hyer reminds us that tonnetze--both his and Rie-
 mann's-are tonal representations, in that they are translations from that
 which is heard and remembered to that which is seen. Hyer notes that
 "Riemann himself calls our attention to the radical consequences of the-
 orizing hearing in terms of seeing. After commenting on our inclination
 to imagine low frequencies as dark tones and high frequencies as bright
 tones, he further observes that 'the hearing of changes in [pitch] is trans-
 formed into a vision of changes in location," concluding that musical
 cognition assumes an 'ultimate identification of the essences of visual
 and aural imagination'" (Hyer 1995, 104).12 This rings true; my account
 of the differences between various representations of tonality and meter
 stands or falls on the extent to which they truthfully represent relation-
 ships between pitch and time. But the use of representations-whether in
 musical notation, pictures, or words-is unavoidable in music theory and
 analysis. What is gained in this exercise is that by trying to follow the
 same "rules" in constructing graphic representations of tonal and metric
 relationships, we are forced to confront the differences between them.
 We also are reminded of how the topologies of both M/T space and PC
 space-the metric tree and the tonal tonnetz-arise from the combina-
 tion of formal relationships among their component elements as well as
 the way human beings hear and understand those relationships: octave
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 and enharmonic equivalence play a strong role in shaping the tonal torus,
 as do categorical perception and the upper and lower limits of temporal
 discrimination in shaping and pruning the metric tree. These graphs thus
 represent not just musical systems, but also our musical psychology. As
 in all of our musical representations, what we can hear and what we can
 imagine are intertwined and interdependent.
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 NOTES

 1. To be sure, Lewin is careful to note the different group-theoretic properties of each
 domain-see chapter 4 and passim.

 2. For an overview of recent work in neo-Riemannian theory see Cohn 1998, and
 indeed all of volume 42.2 of this journal.

 3. Longuet-Higgins also somewhat crankily complains that "musical theorists should
 be, apparently, so ignorant of the two-dimensional nature of harmonic relation-
 ships" (248); though he seems to acknowledge Schoenberg's mappings of tonal
 regions, he was apparently unaware of the work Riemann, Oettingen, and others.

 4. Here is where Lerdahl's representation differs most strongly from other neo-Rie-
 mannian representations. For Lerdahl, a tonic location is privileged, as it serves to
 generate the space. In an alternative to this approach, as Hyer has aptly put it, a
 tonic introduces a kind of "gravitational distortion" into a tonal space, which
 might account for the differing degrees of tonal distance found by Krumhansl and
 Kessler, but which does not require a non-uniform structure of the space itself
 (Hyer 1995, 109).

 5. Trudeau's work is an excellent introduction to the basic conceptions and problems
 of graph theory.

 6. To get an intuitive notion of their non-planarity, try and stretch the interior diago-
 nals of K5 outside the pentagram to create a graph without edge crossings, as was
 done with K4 (hint: leave two diagonals inside).

 7. Music psychologists have also recognized the primacy of the beat level of the met-
 ric hierarchy: Jones (1992) and Jones and Boltz (1989) speak of a "referent level"
 which anchors the metric hierarchy; Miller, Scarborough, and Jones (1992) have
 shown that beat level oscillators do not require as much reinforcement as do higher
 and lower levels of metric structure; and Fraisse (1987) and Parncutt (1994) have
 shown that the perception of a beat or pulse is correlated with preferred tempo and
 subjective rhythmicization.

 8. An extended discussion of this representation of metric space, and its relationship
 to various perceptual and cognitive limits, is given in London 2002.

 9. See also Gabrielsson, Bengtsson, and Gabrielsson 1983; Clarke and Windsor
 1992; and Windsor 1993.

 10. For studies of the 80-100ms threshold see Hirsh, et. al. 1990 and Roeder 1995; for

 studies of the two-second upper bound for temporal continuity among successive
 stimuli, see Fraisse 1982; for the limit of the psychological present and its effect
 on meter see Brower 1993 and Berz 1995.

 11. Interestingly, while the duple subdivision is longer than 250ms, the triplet subdi-
 visions are shorter-suggesting that at this particular tempo, there may be cate-
 gorical differences between simple versus compound subdivision, as 250ms is
 another important cognitive threshold.

 12. On the other hand, cross-domain mappings between auditory and visual phenom-
 ena, and even shared forms of mental processing and representation, have been the
 subject of much research in auditory perception and cognition; the locus classicus
 for recent work in this area is Bregman 1990; see also Saslaw 1996 and Zbikowski
 1998.
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