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Graphs

Graph Theory: The mathematical study of pairwise
relationships between objects

Graph: Denoted G , a set of edges E (G ) and vertices V (G ),
where the edges connect pairs of vertices.

Adjacent Vertices: A pair of vertices connected by a single
edge.
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Paths, Distance, and Diameter

Path: An alternating sequence of vertices and edges where no
element is repeated.

Path length: The number of edges in a path.

Cycle: A path that starts and ends at the same vertex

Distance: The length of the shortest path between two
vertices u and v . Denoted dist(u, v).

Diameter: The greatest distance between any pair of vertices
in G . Denoted diam(G ).
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Bipartite Graph: A graph containing no odd cycles
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Communication Networks

Table 1: A Communication Network
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Communication Networks

Figure 1: The Same Communication Network Represented with a Graph

Each of the towers becomes a vertex in the graph

Towers without obstructions between them share an edge

We prefer that the incoming and outgoing signals at each
tower are at different frequencies, minimizing interference.

We can model this by giving each frequency a color
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Proper Paths and Proper Connectedness

Properly Colored Path: A path in which no two consecutive
edges are the same color
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Properly Connected Coloring: A coloring c of some graph
G in which every two vertices have a properly colored path
between them
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Proper Distance and Proper Diameter

Let c be a properly connected 2-coloring on a graph G .

Proper Distance: The length of the shortest properly colored
path between two vertices.

- Notation: pdist2(u, v , c)

Proper Diameter: The greatest proper distance in a graph.

- Notation: For G with a given coloring c , pdiam2(G , c)
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Observation: diam(G ) ≤ pdiam2(G , c) ≤ # vertices −1
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Known Properties of Proper Diameter

The connectivity of a graph κ(G ) is the smallest number of
vertices that must be removed to disconnect the graph.
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Theorem (Coll et. al. (2018))

For any properly connected 2-colored graph G of order n ≥ 2,
pdiam2(G ) ≤ n − κ(G ) + 1.

When κ(G ) = 2, this inequality simplifies to
pdiam2(G ) ≤ n − 1. When is this upper bound attainable?
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Open Conjecture

Open Conjecture

Let G be a graph so that κ(G ) = 2. If G is bipartite, then
pdiam2(G ) < n − 1.

Counterexamples:

There seem to be a variety of counterexamples.
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Generalizing the Counterexamples

Since all counterexamples have proper diameter of n − 1, we
know a properly colored path through all the vertices existsw.

Now edges must be added so κ(G ) = 2. These edges are
called links. First add links incident to either end of the path.

Cut vertices still remain, so κ(G ) = 1. Links must cross over
somewhere to increase the connectivity of G to 2.
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Generalizing the Counterexamples

The links are restricted to where they can be placed.

Here the proper diameter is less than n − 1.

The links can be placed to keep the proper diameter at n − 1.

If G is a counterexample, once it has connectivity 2, there will
be two different Hamiltonian paths between the ends of the
path. The yellow path, which uses links, is called a chain.
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Alternate Orientation

Illustration of isomorphism between path form and
consolidated form:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 v11

v4 v5 v10

v2 v7 v8
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Definition of Tn Graphs (Version 1)

Definition: Tn Graph 1.0

A Tn Graph is bipartite with κ(G ) = 2. The structure contains an
even cycle with a pair of opposite vertices called ears. Add all
possible bands, which are paths not on the cycle between pairs of
vertices that have the same distance from each ear.

Note: Tn Graphs are bipartite, and therefore all bands in the
cycle must have an odd number of vertices.

pdiam2(T , c1) = n − 1 = 10
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Extension 1: Non-Bipartite Bands

We can allow edges within bands to create odd cycles.

Any edge between two vertices in the same band can be
colored so that the graph still has a proper diameter of n − 1
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Extension 2: Non-Bipartite Skeleton

Another skeleton structure is possible

We can allow the first and last bands to create odd cycles.
Interior links are still required to create even cycles.
⇐⇒ All bands’ numbers of vertices must be equivalent mod 2

Even Tn Odd Tn

”Mixed” Tn graphs would necessarily contain a shortcut
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Final Formulation of Tn Graphs

Final Definition: Tn Graph

A Tn Graph contains an even cycle and all possible bands on the
cycle. All bands must have lengths equivalent mod 2 and any edge
may be added between vertices in a band.
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Conclusion

Open Conjecture

Let G be a graph so that κ(G ) = 2. If G is bipartite, then
pdiam2(G ) < n − 1.

Disproved the conjecture by finding a counterexample

Created Tn: The family of all counterexamples

Generalized Tn to include graphs that aren’t bipartite

Now includes all 2-connected graphs with maximum proper
diameter

Theorem (F., G., M., R., S., S. (2018)+)

Let G be a graph on n vertices with κ(G ) ≥ 2. The proper
diameter of G is n − 1 if and only if G is a Tn Graph.
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Future Directions

Refine the Tn information to submit a paper for publication

Continue looking at proper diameter in other graph families

Generalize Tn to other connectivity values

Explore proper connectivity
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Q.E.D.

Thank you! Questions?
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