Exploring Upper Bounds of Graph Proper Diameters

Nathaniel Sauerberg

Carleton College

October 2, 2018

This material is based upon work supported by the National Science Foundation under Grant Number 1560222.

Background

• Research Performed at Lafayette College Math REU

Background

- Research Performed at Lafayette College Math REU
- Mentors: Karen McCready and Kathleen Ryan

- Research Performed at Lafayette College Math REU
- Mentors: Karen McCready and Kathleen Ryan
- Collaborators: Grant Fickes, Dylan Green, and Jill Stifano

• **Graph Theory:** The mathematical study of pairwise relationships between objects

- Graph Theory: The mathematical study of pairwise relationships between objects
- **Graph**: Denoted *G*, a set of edges *E*(*G*) and vertices *V*(*G*), where the edges connect pairs of vertices.

- Graph Theory: The mathematical study of pairwise relationships between objects
- **Graph**: Denoted *G*, a set of edges *E*(*G*) and vertices *V*(*G*), where the edges connect pairs of vertices.
- Adjacent Vertices: A pair of vertices connected by a single edge.

- Graph Theory: The mathematical study of pairwise relationships between objects
- **Graph**: Denoted *G*, a set of edges *E*(*G*) and vertices *V*(*G*), where the edges connect pairs of vertices.
- Adjacent Vertices: A pair of vertices connected by a single edge.

• **Path**: An alternating sequence of vertices and edges where no element is repeated.

- **Path**: An alternating sequence of vertices and edges where no element is repeated.
- Path length: The number of edges in a path.

- **Path**: An alternating sequence of vertices and edges where no element is repeated.
- Path length: The number of edges in a path.
- Cycle: A path that starts and ends at the same vertex

- **Path**: An alternating sequence of vertices and edges where no element is repeated.
- Path length: The number of edges in a path.
- Cycle: A path that starts and ends at the same vertex
- **Distance**: The length of the shortest path between two vertices *u* and *v*. Denoted dist(*u*, *v*).

- **Path**: An alternating sequence of vertices and edges where no element is repeated.
- Path length: The number of edges in a path.
- Cycle: A path that starts and ends at the same vertex
- **Distance**: The length of the shortest path between two vertices *u* and *v*. Denoted dist(*u*, *v*).
- **Diameter**: The greatest distance between any pair of vertices in *G*. Denoted diam(*G*).

- **Path**: An alternating sequence of vertices and edges where no element is repeated.
- Path length: The number of edges in a path.
- Cycle: A path that starts and ends at the same vertex
- **Distance**: The length of the shortest path between two vertices *u* and *v*. Denoted dist(*u*, *v*).
- **Diameter**: The greatest distance between any pair of vertices in *G*. Denoted diam(*G*).

- **Path**: An alternating sequence of vertices and edges where no element is repeated.
- Path length: The number of edges in a path.
- Cycle: A path that starts and ends at the same vertex
- **Distance**: The length of the shortest path between two vertices *u* and *v*. Denoted dist(*u*, *v*).
- **Diameter**: The greatest distance between any pair of vertices in *G*. Denoted diam(*G*).

• Bipartite Graph: A graph containing no odd cycles

Table 1: A Communication Network

Figure 1: The Same Communication Network Represented with a Graph

Figure 1: The Same Communication Network Represented with a Graph

• Each of the towers becomes a vertex in the graph

Figure 1: The Same Communication Network Represented with a Graph

- Each of the towers becomes a vertex in the graph
- Towers without obstructions between them share an edge

Figure 1: The Same Communication Network Represented with a Graph

- Each of the towers becomes a vertex in the graph
- Towers without obstructions between them share an edge
- We prefer that the incoming and outgoing signals at each tower are at different frequencies, minimizing interference.

Figure 1: The Same Communication Network Represented with a Graph

- Each of the towers becomes a vertex in the graph
- Towers without obstructions between them share an edge
- We prefer that the incoming and outgoing signals at each tower are at different frequencies, minimizing interference.
- We can model this by giving each frequency a color

• **Properly Colored Path**: A path in which no two consecutive edges are the same color

• Properly Colored Path: A path in which no two consecutive edges are the same color

 Properly Colored Path: A path in which no two consecutive edges are the same color

• **Properly Connected Coloring**: A coloring *c* of some graph *G* in which every two vertices have a properly colored path between them

 Properly Colored Path: A path in which no two consecutive edges are the same color

• **Properly Connected Coloring**: A coloring *c* of some graph *G* in which every two vertices have a properly colored path between them

- **Proper Distance**: The length of the shortest properly colored path between two vertices.
 - Notation: $pdist_2(u, v, c)$

- **Proper Distance**: The length of the shortest properly colored path between two vertices.
 - Notation: $pdist_2(u, v, c)$
- Proper Diameter: The greatest proper distance in a graph.

- **Proper Distance**: The length of the shortest properly colored path between two vertices.
 - Notation: $pdist_2(u, v, c)$
- Proper Diameter: The greatest proper distance in a graph.
 - Notation: For G with a given coloring c, $pdiam_2(G, c)$

- **Proper Distance**: The length of the shortest properly colored path between two vertices.
 - Notation: $pdist_2(u, v, c)$
- Proper Diameter: The greatest proper distance in a graph.
 - Notation: For G with a given coloring c, $pdiam_2(G, c)$

Let c be a properly connected 2-coloring on a graph G.

- **Proper Distance**: The length of the shortest properly colored path between two vertices.
 - Notation: $pdist_2(u, v, c)$
- Proper Diameter: The greatest proper distance in a graph.
 - Notation: For G with a given coloring c, $pdiam_2(G, c)$

Observation: diam(G) ≤ pdiam₂(G, c) ≤ # vertices −1

Known Properties of Proper Diameter

 The connectivity of a graph κ(G) is the smallest number of vertices that must be removed to disconnect the graph.

Known Properties of Proper Diameter

 The connectivity of a graph κ(G) is the smallest number of vertices that must be removed to disconnect the graph.

Theorem (Coll et. al. (2018))

For any properly connected 2-colored graph G of order $n \ge 2$, pdiam₂(G) $\le n - \kappa(G) + 1$.

Known Properties of Proper Diameter

 The connectivity of a graph κ(G) is the smallest number of vertices that must be removed to disconnect the graph.

Theorem (Coll et. al. (2018))

For any properly connected 2-colored graph G of order $n \ge 2$, pdiam₂(G) $\le n - \kappa(G) + 1$.

 When κ(G) = 2, this inequality simplifies to pdiam₂(G) ≤ n − 1. When is this upper bound attainable?

Open Conjecture

Open Conjecture

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

Open Conjecture

Open Conjecture

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

• Counterexamples:
Open Conjecture

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

Open Conjecture

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

Open Conjecture

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

Open Conjecture

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

Open Conjecture

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

Open Conjecture

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

Open Conjecture

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

• Counterexamples:

• There seem to be a variety of counterexamples.

 Since all counterexamples have proper diameter of n − 1, we know a properly colored path through all the vertices existsw.

 Since all counterexamples have proper diameter of n − 1, we know a properly colored path through all the vertices existsw.

 Since all counterexamples have proper diameter of n − 1, we know a properly colored path through all the vertices existsw.

Now edges must be added so κ(G) = 2. These edges are called links. First add links incident to either end of the path.

 Since all counterexamples have proper diameter of n − 1, we know a properly colored path through all the vertices existsw.

Now edges must be added so κ(G) = 2. These edges are called links. First add links incident to either end of the path.

 Since all counterexamples have proper diameter of n − 1, we know a properly colored path through all the vertices existsw.

Now edges must be added so κ(G) = 2. These edges are called links. First add links incident to either end of the path.

 Since all counterexamples have proper diameter of n − 1, we know a properly colored path through all the vertices existsw.

Now edges must be added so κ(G) = 2. These edges are called links. First add links incident to either end of the path.

 Cut vertices still remain, so κ(G) = 1. Links must cross over somewhere to increase the connectivity of G to 2.

• The links are restricted to where they can be placed.

• Here the proper diameter is less than n-1.

- Here the proper diameter is less than n-1.
- The links can be placed to keep the proper diameter at n-1.

- Here the proper diameter is less than n-1.
- The links can be placed to keep the proper diameter at n-1.

• The links are restricted to where they can be placed.

• Here the proper diameter is less than n-1.

• The links can be placed to keep the proper diameter at n-1.

- Here the proper diameter is less than n-1.
- The links can be placed to keep the proper diameter at n-1.

• The links are restricted to where they can be placed.

- Here the proper diameter is less than n-1.
- The links can be placed to keep the proper diameter at n-1.

• If *G* is a counterexample, once it has connectivity 2, there will be two different Hamiltonian paths between the ends of the path. The yellow path, which uses links, is called a **chain**.

Alternate Orientation

• Illustration of isomorphism between path form and consolidated form:

Alternate Orientation

• Illustration of isomorphism between path form and consolidated form:

Alternate Orientation

• Illustration of isomorphism between path form and consolidated form:

A \mathcal{T}_n **Graph** is bipartite with $\kappa(G) = 2$. The structure contains an even cycle with a pair of opposite vertices called **ears**. Add all possible **bands**, which are paths not on the cycle between pairs of vertices that have the same distance from each ear.

A \mathcal{T}_n **Graph** is bipartite with $\kappa(G) = 2$. The structure contains an even cycle with a pair of opposite vertices called **ears**. Add all possible **bands**, which are paths not on the cycle between pairs of vertices that have the same distance from each ear.

A \mathcal{T}_n **Graph** is bipartite with $\kappa(G) = 2$. The structure contains an even cycle with a pair of opposite vertices called **ears**. Add all possible **bands**, which are paths not on the cycle between pairs of vertices that have the same distance from each ear.

• Note: T_n Graphs are bipartite, and therefore all bands in the cycle must have an odd number of vertices.

A \mathcal{T}_n **Graph** is bipartite with $\kappa(G) = 2$. The structure contains an even cycle with a pair of opposite vertices called **ears**. Add all possible **bands**, which are paths not on the cycle between pairs of vertices that have the same distance from each ear.

• Note: T_n Graphs are bipartite, and therefore all bands in the cycle must have an odd number of vertices.

Definition: \mathcal{T}_n Graph 1.0

A \mathcal{T}_n **Graph** is bipartite with $\kappa(G) = 2$. The structure contains an even cycle with a pair of opposite vertices called **ears**. Add all possible **bands**, which are paths not on the cycle between pairs of vertices that have the same distance from each ear.

• Note: T_n Graphs are bipartite, and therefore all bands in the cycle must have an odd number of vertices.

• We can allow edges within bands to create odd cycles.

- We can allow edges within bands to create odd cycles.
- Any edge between two vertices in the same band can be colored so that the graph still has a proper diameter of n - 1

- We can allow edges within bands to create odd cycles.
- Any edge between two vertices in the same band can be colored so that the graph still has a proper diameter of n - 1

- We can allow edges within bands to create odd cycles.
- Any edge between two vertices in the same band can be colored so that the graph still has a proper diameter of n - 1

- We can allow edges within bands to create odd cycles.
- Any edge between two vertices in the same band can be colored so that the graph still has a proper diameter of n - 1

- We can allow edges within bands to create odd cycles.
- Any edge between two vertices in the same band can be colored so that the graph still has a proper diameter of n - 1

- We can allow edges within bands to create odd cycles.
- Any edge between two vertices in the same band can be colored so that the graph still has a proper diameter of n - 1

- We can allow edges within bands to create odd cycles.
- Any edge between two vertices in the same band can be colored so that the graph still has a proper diameter of n - 1

- We can allow edges within bands to create odd cycles.
- Any edge between two vertices in the same band can be colored so that the graph still has a proper diameter of n - 1

- We can allow edges within bands to create odd cycles.
- Any edge between two vertices in the same band can be colored so that the graph still has a proper diameter of n - 1

• Another skeleton structure is possible

- Another skeleton structure is possible
- We can allow the first and last bands to create odd cycles.
 Interior links are still required to create even cycles.
 All bands' numbers of vertices must be equivalent mod 2

Extension 2: Non-Bipartite Skeleton

- Another skeleton structure is possible
- We can allow the first and last bands to create odd cycles.
 Interior links are still required to create even cycles.
 All bands' numbers of vertices must be equivalent mod 2

Extension 2: Non-Bipartite Skeleton

- Another skeleton structure is possible
- We can allow the first and last bands to create odd cycles.
 Interior links are still required to create even cycles.
 All bands' numbers of vertices must be equivalent mod 2

• "Mixed" T_n graphs would necessarily contain a shortcut

Final Definition: T_n Graph

A T_n **Graph** contains an even cycle and all possible bands on the cycle. All bands must have lengths equivalent mod 2 and any edge may be added between vertices in a band.

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

• Disproved the conjecture by finding a counterexample

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then $pdiam_2(G) < n-1$.

- Disproved the conjecture by finding a counterexample
- Created T_n : The family of all counterexamples

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then pdiam₂(G) < n - 1.

- Disproved the conjecture by finding a counterexample
- Created T_n : The family of all counterexamples
- Generalized \mathcal{T}_n to include graphs that aren't bipartite

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then pdiam₂(G) < n - 1.

- Disproved the conjecture by finding a counterexample
- Created T_n : The family of all counterexamples
- Generalized \mathcal{T}_n to include graphs that aren't bipartite
- Now includes all 2-connected graphs with maximum proper diameter

Let G be a graph so that $\kappa(G) = 2$. If G is bipartite, then pdiam₂(G) < n - 1.

- Disproved the conjecture by finding a counterexample
- Created T_n : The family of all counterexamples
- Generalized T_n to include graphs that aren't bipartite
- Now includes all 2-connected graphs with maximum proper diameter

Theorem (F., G., M., R., S., S. (2018)+)

Let G be a graph on n vertices with $\kappa(G) \ge 2$. The proper diameter of G is n-1 if and only if G is a \mathcal{T}_n Graph.

- Refine the \mathcal{T}_n information to submit a paper for publication
- Continue looking at proper diameter in other graph families
- Generalize \mathcal{T}_n to other connectivity values
- Explore proper connectivity

- V. Coll, J. Hook, C. Magnant, K. McCready, and K. Ryan, The Proper Diameter of a Graph, *Discuss. Math. Graph Theory*, (2018) 1-19.
- V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, and Z. Tuza. Proper connection of graphs. *Discrete Math.*, 312(17):2550–2560, 2012.

Thank you! Questions?