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Number theory and L-functions

Number theory is one of the most ancient branches of
mathematics.
Examples of L-functions:

Riemann-Zeta function

ζ(s) =
∞∑
n=1

1

ns

Dirichlet L-function

L(s, χ) =
∞∑
n=1

χ(n)

ns
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Number theory and L-functions

Birch and Swinnerton-Dyer conjecture

Hasse-Weil L-function

L(s,E ) =
∏
p

1

1− app−s + p1−2s
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Representation Theory

Representation theory is the formal mathematical study of
symmetries

A representation of a group G is a linear group action of G on
a vector space V , called the representation space.

A group action of a group G on a set A is a map from G × A
to A such that:

g1 · (g2 · a) = (g1g2) · a for all g1, g2 in G , a in A
1 · a = a for all a in A

Student researcher: Julie Yuldasheva Adviser: Will Grodzicki

Constructing Generalized Gelfand-Graev Representations



Representation Theory

Representation theory is the formal mathematical study of
symmetries

A representation of a group G is a linear group action of G on
a vector space V , called the representation space.

A group action of a group G on a set A is a map from G × A
to A such that:

g1 · (g2 · a) = (g1g2) · a for all g1, g2 in G , a in A
1 · a = a for all a in A

Student researcher: Julie Yuldasheva Adviser: Will Grodzicki

Constructing Generalized Gelfand-Graev Representations



Representation Theory

Representation theory is the formal mathematical study of
symmetries

A representation of a group G is a linear group action of G on
a vector space V , called the representation space.

A group action of a group G on a set A is a map from G × A
to A such that:

g1 · (g2 · a) = (g1g2) · a for all g1, g2 in G , a in A
1 · a = a for all a in A

Student researcher: Julie Yuldasheva Adviser: Will Grodzicki

Constructing Generalized Gelfand-Graev Representations



Representation of S3 on R3

S3 acts on vectors in R3 by permuting their coordinates.

For example: (123) · 〈x , y , z〉 = 〈z , x , y〉 and
(23) · 〈x , y , z〉 = 〈x , z , y〉
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Representation of S3 on R3

The action of S3 on R3 can be understood by looking at specific
subspaces that are stable under the group action:

The span of a vector w = 〈1, 1, 1〉
Vectors whose coordinates add to 0, that live in the plane
x + y + z = 0.
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Representation of S3 on R3

The action of S3 on the vector 〈1, 2, 3〉 can be understood by
expressing 〈1, 2, 3〉 as a linear combination of w and vectors whose
coordinates add to 0.

〈1, 2, 3〉 = 〈−1, 0, 1〉+ 〈2, 2, 2〉
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Representation of S3 on R3
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Generalized Gelfand-Graev Representations

Generalized Gelfand-Graev representations (GGGRs) have
originally been introduced by Kawanaka in 1985.

They are important for integral realizations of automorphic
L-functions.

The main result of our project sheds light on the construction
of GGGRs in the case of GL(n) defined over finite fields.
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GGGRs

To make a GGGR we need the following components:

A = representative of a nilpotent orbit in n× n matrices under
conjugation action of GL(n)

UA = unipotent subgroup associated to A

LA = Levi subgroup associated to A

ZL = ZL(A) = {` ∈ LA | `A`−1 = A}
(η,V ) = a representation of UAZL
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GGGRs

Ex: A =

0 1
0

0

 L =

∗ ∗
∗



UA =

1 ∗ ∗
1 ∗

1

 ZL =

x
y

x


The GGGR is representation of G induced from UAZL.

An induced representation is a representation of G built from a
representation of a subgroup.
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Nilpotent matrices

A matrix A is nilpotent if An = 0 for some n > 0.

Ex: A =

(
0 1
0 0

)
, A2 = 0
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Example of a Nilpotent Orbit

A nilpotent orbit is a set O of nilpotent matrices such that for any
A,B in O, A = gBg−1 for some g in G .
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Example of a Nilpotent Orbit

Orbit Representative0 1
0 1

0


Other Matrices in the Orbit 0 1 0

−2 −4 2
−4 −7 4

 =

2 0 0
0 2 0
2 4 1

0 1
0 1

0

2 0 0
0 2 0
2 4 1

−1
−5 −7 −2

3 4 1
1 2 1

 =

 1 −2 0
−1 1 0
1 1 1

0 1
0 1

0

 1 −2 0
−1 1 0
1 1 1

−1
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Partitions and Nilpotent Orbits

A partition of n is a way of expressing n as a sum of positive
integers, i.e. [λ1, . . . λr ] such that λ1 + . . .+ λr = n.

Ex: a partition of 5: [3, 2]

Nilpotent orbits are in bijective correspondence with partitions
of n.

Our choice of the nilpotent orbit representative is determined
by having the semisimple element in dominance order.
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Partitions and Nilpotent Orbits

Partition = [3, 1]

Semisimple Element Nilpotent Orbit Representative
2

0
−2

0




0 1
0 1

0
0




2
0

0
−2




0 1
0 1

0
0


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Result

Theorem

Let G = GL(n,Fq). Let Γλ be the GGGR corresponding to the

partition λ = [λk11 , . . . λ
kr
r ]. Then ZL is a subgroup of G consisting

of λi identical GL(ki ) blocks on the diagonal.

Student researcher: Julie Yuldasheva Adviser: Will Grodzicki

Constructing Generalized Gelfand-Graev Representations



Theorem in action

Partition Nilpotent Orbit Representative ZL

[3, 2]


0 1

0 1
0 1

0
0



v

u
v

u
v



[2, 13]


0 1

0
0

0
0




x

A

x


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Justification for the Theorem

Given [22], arrange the nilpotent orbit representative in blocks
corresponding to the partition and assign variables along the
diagonal for each block.

0 1
0

0 1
0

 −→


x
x

y
y


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Justification for the Theorem

The nilpotent orbit representative of the partition determines the
correct positions of the variables in ZL. Repeating patterns of n
variables indicate a GL(n) block in ZL.

0 1
0 1

0
0

 −→

x

y
x

y



−→ ZL =

 A

A


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Further Research

The matrix coefficients that appear in integral representations of
some L-functions come from groups other than GL(n). With this
in mind, we have the following plans for future research:

Find a formula for ZL for other finite groups of Lie type, e.g.
SO(2n + 1), Sp(2n), SO(2n).

For the groups above, find a formula for U1.5 (such a formula
is known for GL(n))
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