Linear Factorization of Hypercyclic Functions for Differential Operators

Jakob Hofstad

St. Olaf College

NUMS 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

-Some derivative series of common functions:

(ロ)、(型)、(E)、(E)、 E) の(()

-Some derivative series of common functions:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

-Derivatives of sin(x):

- -Some derivative series of common functions:
- -Derivatives of $\sin(x)$: { $\cos(x)$, $-\sin(x)$, $-\cos(x)$, $\sin(x)$, ... }

- -Some derivative series of common functions:
- -Derivatives of $\sin(x)$: { $\cos(x)$, $-\sin(x)$, $-\cos(x)$, $\sin(x)$, ... }

-Derivatives of $3x^2$:

- -Some derivative series of common functions:
- -Derivatives of $\sin(x)$: { $\cos(x)$, $-\sin(x)$, $-\cos(x)$, $\sin(x)$, ... }

-Derivatives of $3x^2$: $\{6x, 6, 0, \dots\}$

- -Some derivative series of common functions:
- -Derivatives of $\sin(x)$: { $\cos(x)$, $-\sin(x)$, $-\cos(x)$, $\sin(x)$, ... }

- -Derivatives of $3x^2$: $\{6x, 6, 0, \dots\}$
- -Derivatives of e^{2x} :

- -Some derivative series of common functions:
- -Derivatives of $\sin(x)$: { $\cos(x)$, $-\sin(x)$, $-\cos(x)$, $\sin(x)$, ... }

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- -Derivatives of $3x^2$: $\{6x, 6, 0, \dots\}$
- -Derivatives of $e^{2x} : \{2e^{2x}, 4e^{2x}, 8e^{2x}, \dots\}$

- -Some derivative series of common functions:
- -Derivatives of $\sin(x)$: { $\cos(x)$, $-\sin(x)$, $-\cos(x)$, $\sin(x)$, ... }

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- -Derivatives of $3x^2$: $\{6x, 6, 0, \dots\}$
- -Derivatives of $e^{2x} : \{2e^{2x}, 4e^{2x}, 8e^{2x}, \dots\}$

There exists an infinitely differentiable function f(x) such that the list $\{f'(x), f''(x), f'''(x), \dots\}$ is dense in C[0, 1]: the set of continuous functions from x = 0 to x = 1.

There exists an infinitely differentiable function f(x) such that the list $\{f'(x), f''(x), f'''(x), \dots\}$ is dense in C[0, 1]: the set of continuous functions from x = 0 to x = 1.

There exists an infinitely differentiable function f(x) such that the list $\{f'(x), f''(x), f'''(x), \dots\}$ is dense in C[0, 1]: the set of continuous functions from x = 0 to x = 1.

There exists an infinitely differentiable function f(x) such that the list $\{f'(x), f''(x), f'''(x), \ldots\}$ is dense in C[0, 1]: the set of continuous functions from x = 0 to x = 1.

-Example 1: $(I+2D^2)f = f+2f''$

-Example 1: $(I+2D^2)f = f + 2f'', (I+2D^2)^2f = f + 4f'' + 4f''''$

-Example 1: $(I+2D^2)f = f + 2f'', (I+2D^2)^2f = f + 4f'' + 4f''''$

-Example 2: $e^D f(x) = (I + D + \frac{D^2}{2} + \frac{D^3}{6} + \dots)f(x) = f(x+1)$

-Example 1: $(I+2D^2)f = f + 2f'', (I+2D^2)^2f = f + 4f'' + 4f''''$

-Example 2: $e^D f(x) = (I + D + \frac{D^2}{2} + \frac{D^3}{6} + \dots)f(x) = f(x+1)$

-What about making infinite lists with a differential operator $T: \{Tf, T^2f, T^3f, \ldots\}$

-If this list is dense, then f is a hypercyclic function for the operator ${\cal T}$

There exists a countably infinite set of polynomials $\{p_1, p_2, p_3, ...\}$ that is dense in C[0, 1].

-Define the integration operator A: $Af = \int_{0}^{x} f(t)dt$.

There exists a countably infinite set of polynomials $\{p_1, p_2, p_3, ...\}$ that is dense in C[0, 1].

-Define the integration operator A: $Af = \int_{0}^{1} f(t)dt$.

-A is a right inverse of D: DAf = f

There exists a countably infinite set of polynomials $\{p_1, p_2, p_3, ...\}$ that is dense in C[0, 1].

-Define the integration operator A: $Af = \int_{0}^{\infty} f(t)dt$.

-A is a right inverse of D: DAf = f

-Important note:
$$A^n x^m = \frac{m! x^{m+n}}{(m+n)!}$$

There exists a countably infinite set of polynomials $\{p_1, p_2, p_3, ...\}$ that is dense in C[0, 1].

-Define the integration operator A: $Af = \int_{0}^{t} f(t)dt$.

-A is a right inverse of D: DAf = f

-Important note:
$$A^n x^m = \frac{m! x^{m+n}}{(m+n)!}$$

 $f = Ap_1$

There exists a countably infinite set of polynomials $\{p_1, p_2, p_3, ...\}$ that is dense in C[0, 1].

-Define the integration operator A: $Af = \int_{0}^{t} f(t)dt$.

-A is a right inverse of D: DAf = f

-Important note: $A^n x^m = \frac{m! x^{m+n}}{(m+n)!}$

 $f = Ap_1 + A^{n_2}p_2$

There exists a countably infinite set of polynomials $\{p_1, p_2, p_3, ...\}$ that is dense in C[0, 1].

A D N A 目 N A E N A E N A B N A C N

-Define the integration operator A: $Af = \int_{0}^{x} f(t)dt$.

-A is a right inverse of D: DAf = f

-Important note: $A^n x^m = \frac{m! x^{m+n}}{(m+n)!}$

 $f = Ap_1 + A^{n_2}p_2 + A^{n_3}p_3 + \dots + A^{n_i}p_i + \dots$

Project Goal: Extension of MacLane's Theorem

-Like MacLane's Theorem, except:

-Like MacLane's Theorem, except:

-Replace D with any differential operator ${\cal T}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- -Like MacLane's Theorem, except:
- -Replace D with any differential operator T
- -Make f a *complex* function

- -Like MacLane's Theorem, except:
- -Replace D with any differential operator T
- -Make f a *complex* function
- -Make f an infinite product of linear functions:

$$f(z) = \prod_{j=1}^{\infty} \left(1 - \frac{z}{a_j} \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let
$$T = \sum_{i=0}^{\infty} a_i D^i = \psi(D)$$

Let
$$T = \sum_{i=0}^{\infty} a_i D^i = \psi(D)$$

-When T operates on finite polynomial p with degree $m,\,\infty$ can be replaced with m

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let
$$T = \sum_{i=0}^{\infty} a_i D^i = \psi(D)$$

-When T operates on finite polynomial p with degree $m,\,\infty$ can be replaced with m , and T can be written as

$$Tp = a_0 D^l \left(I - \frac{D}{r_1} \right) \left(I - \frac{D}{r_2} \right) \cdots \left(I - \frac{D}{r_{m-l}} \right) p$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let
$$T = \sum_{i=0}^{\infty} a_i D^i = \psi(D)$$

-When T operates on finite polynomial p with degree $m,\,\infty$ can be replaced with m , and T can be written as

$$Tp = a_0 D^l \left(I - \frac{D}{r_1} \right) \left(I - \frac{D}{r_2} \right) \cdots \left(I - \frac{D}{r_{m-l}} \right) p$$

-Note that

$$\left(I - \frac{D}{r}\right)\left(I + \frac{D}{r} + \frac{D^2}{r^2} + \dots + \frac{D^m}{r^m}\right) = \left(I - \frac{D^{m+1}}{r^{m+1}}\right)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Finding Inverse of Operator T (continued)

$$Tp = a_0 D^l \left(I - \frac{D}{r_1} \right) \left(I - \frac{D}{r_2} \right) \cdots \left(I - \frac{D}{r_{m-l}} \right) p$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A set of operators S_n , acting on finite polynomial p, can be defined such that $T^n S_n p = p$.

$$Tp = a_0 D^l \left(I - \frac{D}{r_1} \right) \left(I - \frac{D}{r_2} \right) \cdots \left(I - \frac{D}{r_{m-l}} \right) p$$

A set of operators S_n , acting on finite polynomial p, can be defined such that $T^n S_n p = p$.

-If l>0, then the integral factor takes over, and $S_np\to 0$ as $n\to\infty.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

-If l = 0, $S_n p \not\rightarrow 0$.

Constructing f as a Product

-Construct
$$f_k = \prod_{j=1}^k (1+q_j)$$
, let $f = \lim_{k \to \infty} f_k$

Constructing f as a Product

-Construct
$$f_k = \prod_{j=1}^k (1+q_j)$$
, let $f = \lim_{k \to \infty} f_k$

-Find polynomials $q_1,q_2,\ldots,$ and integers n_1,n_2,\ldots such that $q_j\to 0$ as $j\to\infty,$ and

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$T^{n_k}(f_k) \approx p_k \implies T^{n_k}(f_{k-1}(1+q_k)) \approx p_k$$

Constructing f as a Product

-Construct
$$f_k = \prod_{j=1}^k (1+q_j)$$
, let $f = \lim_{k \to \infty} f_k$

-Find polynomials $q_1,q_2,\ldots,$ and integers n_1,n_2,\ldots such that $q_j\to 0$ as $j\to\infty,$ and

$$T^{n_k}(f_k) \approx p_k \implies T^{n_k}(f_{k-1}(1+q_k)) \approx p_k$$

Find functions q_n such that, for any f_{k-1} and p_k as $n \to \infty$:

$$q_n \to 0 \tag{1}$$
$$T^n(f_{k-1}(1+q_n)) \to p_k \tag{2}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Tackling the "Big Theorem": Three Cases

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$T = \psi(D)$$
, where $\psi(z) = \sum_{i=0}^{\infty} a_i z^i$

Tackling the "Big Theorem": Three Cases

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$T=\psi(D),$$
 where $\psi(z)=\sum_{i=0}^{\infty}a_iz^i$ Case 1: $T=\psi(D),$ where $\psi(0)=0$

$$T=\psi(D)$$
, where $\psi(z)=\sum_{i=0}^{\infty}a_iz^i$
Case 1: $T=\psi(D)$, where $\psi(0)=0$

Case 2: $T = \psi(D)$, where $\psi(0) \neq 0$, though $\psi(r) = 0$ for some r

$$\begin{split} T &= \psi(D), \text{ where } \psi(z) = \sum_{i=0}^\infty a_i z^i \\ \text{Case 1: } T &= \psi(D), \text{ where } \psi(0) = 0 \\ \text{Case 2: } T &= \psi(D), \text{ where } \psi(0) \neq 0, \text{ though } \psi(r) = 0 \text{ for some } r \\ \text{Case 3: } T &= \psi(D), \text{ where } \psi(z) \text{ has no roots} \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

To search for a possible function q_n , start with condition 2:

$$T^{n}(f_{k-1}(q_{n}+1)) = T^{n}(f_{k-1}q_{n}) + T^{n}(f_{k-1}) \approx p_{k}(z)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

To search for a possible function q_n , start with condition 2:

$$T^{n}(f_{k-1}(q_{n}+1)) = T^{n}(f_{k-1}q_{n}) + T^{n}(f_{k-1}) \approx p_{k}(z)$$

For a big enough n, T^n , which includes a "factor" of D, will bring f_{k-1} to 0 when operated on. Therefore condition 2 becomes

$$T^n(f_{k-1}(q_n)) \approx p_k(z) \implies f_{k-1}q_n \approx S_n p_k$$

To search for a possible function q_n , start with condition 2:

$$T^{n}(f_{k-1}(q_{n}+1)) = T^{n}(f_{k-1}q_{n}) + T^{n}(f_{k-1}) \approx p_{k}(z)$$

For a big enough n, T^n , which includes a "factor" of D, will bring f_{k-1} to 0 when operated on. Therefore condition 2 becomes

$$T^n(f_{k-1}(q_n)) \approx p_k(z) \implies f_{k-1}q_n \approx S_n p_k$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Set q_n to equal quotient polynomial of $S_n p_k$ and f_{k-1} .

-Biggest difference: $S_n p_k \not\rightarrow 0$

-Biggest difference: $S_n p_k \not\rightarrow 0$

 $T = \psi(D)$ has a "factor" of (I - D/r).

-Biggest difference: $S_n p_k \not\rightarrow 0$

 $T=\psi(D)$ has a "factor" of (I-D/r). By the chain rule, for any polynomial g(z),

$$(I - D/r)(g * e^{rz}) = g * e^{rz} - \frac{1}{r}e^{rz}Dg - \frac{1}{r}re^{rz}g = -\frac{1}{r}e^{rz}Dg$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

-Biggest difference: $S_n p_k \not\rightarrow 0$

 $T=\psi(D)$ has a "factor" of (I-D/r). By the chain rule, for any polynomial g(z),

$$(I - D/r)(g * e^{rz}) = g * e^{rz} - \frac{1}{r}e^{rz}Dg - \frac{1}{r}re^{rz}g = -\frac{1}{r}e^{rz}Dg$$

 $T^n(f_{k-1}(q_n+1)) \approx S_n p_k \implies f_{k-1}(q_n+1) \approx S_n p_k + g * e^{rz}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

-Biggest difference: $S_n p_k \not\rightarrow 0$

 $T=\psi(D)$ has a "factor" of (I-D/r). By the chain rule, for any polynomial g(z),

$$(I - D/r)(g * e^{rz}) = g * e^{rz} - \frac{1}{r}e^{rz}Dg - \frac{1}{r}re^{rz}g = -\frac{1}{r}e^{rz}Dg$$

 $T^n(f_{k-1}(q_n+1)) \approx S_n p_k \implies f_{k-1}(q_n+1) \approx S_n p_k + g * e^{rz}$

 $\begin{array}{l} (q_n+1): \text{ quotient polynomial of} \\ S_np_k + (f_{k-1}-S_np_k) \left(\sum_{i=0}^{n-m-1} \frac{(-rz)^i}{i!}\right) \left(\sum_{i=0}^{4n} \frac{(rz)^i}{i!}\right) \text{ and } f_{k-1} \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Case 3: $T = \psi(D), \psi$ has no roots

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\psi(z) = \lambda e^{az}, a \neq 0.$$

$$\psi(z) = \lambda e^{az}, a \neq 0.$$

When z is replaced with D, operator becomes the *translation* operator:

$$\psi(D): f(z) \to \lambda f(z+a)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

-We have
$$f(z) = \prod_{j=1}^{\infty} (1 + q_j(z))$$
. Product is not of *linear* factors

-One may split each $(1 + q_j)$ into linear factors which each also tend to 1, but the new product may not converge.

-Could one reorder the roots of each $\left(1+q_{j}\right)$ so that the product converges? Yes, but it's tricky

-We have
$$f(z) = \prod_{j=1}^{\infty} (1 + q_j(z))$$
. Product is not of *linear* factors

-One may split each $(1 + q_j)$ into linear factors which each also tend to 1, but the new product may not converge.

-Could one $\mathit{reorder}$ the roots of each $(1+q_j)$ so that the product converges? Yes, but it's tricky

-Our goal revisited: Make $\{Tf,T^2f,T^3f,\dots\}$ dense in the set of differentiable complex functions

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thanks for watching! I would also like to thank the following:

-The St. Olaf CURI program for funding my research

-Dave Walmsley, my project advisor and collaborator