Linear Factorization of Hypercyclic Functions for
Differential Operators

Jakob Hofstad

St. Olaf College

NUMS 2018



Repeated Differentiation

-Some derivative series of common functions:



Repeated Differentiation

-Some derivative series of common functions:

-Derivatives of sin(z):



Repeated Differentiation

-Some derivative series of common functions:

-Derivatives of sin(x): {cos(z), — sin(z), — cos(z), sin(x), ... }



Repeated Differentiation

-Some derivative series of common functions:
-Derivatives of sin(x): {cos(z), — sin(z), — cos(z), sin(x), ... }

-Derivatives of 3z2:



Repeated Differentiation

-Some derivative series of common functions:
-Derivatives of sin(x): {cos(z), — sin(z), — cos(z), sin(x), ... }

-Derivatives of 3z2: {6z,6,0,...}



Repeated Differentiation

-Some derivative series of common functions:
-Derivatives of sin(x): {cos(z), — sin(z), — cos(z), sin(x), ... }
-Derivatives of 3z2: {6z,6,0,...}

-Derivatives of e2* :



Repeated Differentiation

-Some derivative series of common functions:
-Derivatives of sin(x): {cos(z), — sin(z), — cos(z), sin(x), ... }
-Derivatives of 3z2: {6z,6,0,...}

-Derivatives of €27 : {227 4e2% 8¢2% ...}



Repeated Differentiation

-Some derivative series of common functions:
-Derivatives of sin(x): {cos(z), — sin(z), — cos(z), sin(x), ... }
-Derivatives of 3z2: {6z,6,0,...}

-Derivatives of €27 : {227 4e2% 8¢2% ...}



MacLane's Theorem (1952)

There exists an infinitely differentiable function f(x) such that the
list {f'(z), f"(x), f"(x),...} is dense in C|0,1]: the set of
continuous functions from x = 0 to x = 1.




MacLane's Theorem (1952)

There exists an infinitely differentiable function f(x) such that the
list {f'(z), f"(x), f"(x),...} is dense in C|0,1]: the set of
continuous functions from x = 0 to x = 1.

—_




MacLane's Theorem (1952)

There exists an infinitely differentiable function f(x) such that the
list {f'(z), f"(x), f"(x),...} is dense in C|0,1]: the set of
continuous functions from x = 0 to x = 1.




MacLane's Theorem (1952)

There exists an infinitely differentiable function f(x) such that the
list {f'(z), f"(x), f"(x),...} is dense in C|0,1]: the set of
continuous functions from x = 0 to x = 1.

y some (") —=5-

N




Differential Operators

-“Differential Operators” are formulas of D, where Df = f’



Differential Operators

-“Differential Operators” are formulas of D, where Df = f’

-Example 1: (I4+2D?)f = f+2f"



Differential Operators

-“Differential Operators” are formulas of D, where Df = f’

-Example 1: (I4+2D?)f = f+2f", (I +2D?)%f = f+4f" +4f""



Differential Operators

-“Differential Operators” are formulas of D, where Df = f’
-Example 1: (I4+2D?)f = f+2f", (I +2D?)%f = f+4f" +4f""

-Example 2: eDf(a:):(I+D+D72+%3—|—...)f(a:):f(:c+1)



Differential Operators

-“Differential Operators” are formulas of D, where Df = f’

-Example 1: (I4+2D?)f = f+2f", (I +2D?)%f = f+4f" +4f""
2 3

-Example 2: eP f(x) = (I + D + %+%+...)f(a:) = f(x +1)

-What about making infinite lists with a differential operator
T:{Tf T?f,T3f,...}

-If this list is dense, then f is a hypercyclic function for the
operator T'
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Brief Sketch of MacLane’s Theorem

There exists a countably infinite set of polynomials {p1,p2,ps,...}
that is dense in C[0, 1].

-Define the integration operator A: Af = /f(t)dt.
0

-A'is a right inverse of D: DAf = f

m—+n

-Important note: A"z™ = T(nvif—&-n)!

f=Ap1 + A™py+ A"p3 + -+ A"p; + ...
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Project Goal: Extension of MaclLane's Theorem

-Like MacLane's Theorem, except:
-Replace D with any differential operator T'
-Make f a complex function

-Make f an infinite product of linear functions:

e =11 (1 - j,)
j=1 J
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Finding Inverse of Operator T’

o
Let 7= a;D" = ¢(D)

i=0
-When T operates on finite polynomial p with degree m, oo can be
replaced with m , and T can be written as

D D D
e (12112
1 T2 T'm—1

-Note that

D D D2 Dm Dm+1
O—)O++z+“4‘m>:@—ﬂm>
r r T r T
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Finding Inverse of Operator T (continued)

D D D
Tp:adﬂ<1—>(1—)-~(1— )p
1 2 T'm—1

A set of operators S, acting on finite polynomial p, can be
defined such that T"S,p = p.

-If [ > 0, then the integral factor takes over, and S,p — 0 as
n — oo.

df 1 =0, Spp 4 0.
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Constructing f as a Product

k
-Construct f;, = H( +qj), let f= hm I
j=1
-Find polynomials ¢1, 2, ..., and integers ny,no, ... such that

qgj — 0as j— oo, and
T (fr) = pr = T™(fr—1(1 +aqr)) =~ pr
Find functions ¢, such that, for any fi_1 and py as n — oo :

qn — 0 (1)
T"(fr—1(1 +qn)) — p (2)
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Case 3: T'= (D), where 1(z) has no roots
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In this case, the T™ operator has an inverse S,, such that
Sppr — 0 as n — oo.

To search for a possible function g, start with condition 2:

T"(fr—1(an + 1)) = T"(fo—1qn) + T" (fr—1) = pr(2)

For a big enough n, T, which includes a “factor” of D, will bring
fr—1 to 0 when operated on. Therefore condition 2 becomes

T"(fr-1(qn)) = pr(2) = fr—19n ~ Snpk

Set ¢, to equal quotient polynomial of S,,p; and fir_1.
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Case 2: T =¢(D),y(r)=0,r #0

-Biggest difference: S,pr /4 0

T = (D) has a “factor” of (I — D/r). By the chain rule, for any
polynomial g(z),

1 1 1
(I —D/r)(g*e™)=gx*xe™” — ;eTZDg — ;rerzg = —;eTZDg

T"(fr—1(gn +1)) = Sppr. = fi—1(gn +1) = Sppr + g x€’*

(gn + 1): quotient polynomial of

g B & (—r2) I (rz)i
WPk + (fro1 = Snpe) | D i > 4| and fer
! — il

1=0
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Case 3: T = ¢(D), 1 has no roots

P(z) = Xe®,a # 0.

When z is replaced with D, operator becomes the translation
operator:

(D) : f(2) = Af(z +a)
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The result is in sight ... almost . ..

o0

-We have f(z) = H(l + ¢;(2)). Product is not of linear factors
j=1

-One may split each (1 + g;) into linear factors which each also
tend to 1, but the new product may not converge.

-Could one reorder the roots of each (1 + g;) so that the product
converges? Yes, but it's tricky

-Our goal revisited: Make {T'f, T%f, T3f,...} dense in the set of
differentiable complex functions
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