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Repeated Differentiation

-Some derivative series of common functions:

-Derivatives of sin(x): {cos(x),− sin(x),− cos(x), sin(x), . . . }

-Derivatives of 3x2: {6x, 6, 0, . . . }

-Derivatives of e2x : {2e2x, 4e2x, 8e2x, . . . }
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MacLane’s Theorem (1952)

There exists an infinitely differentiable function f(x) such that the
list {f ′(x), f ′′(x), f ′′′(x), . . . } is dense in C[0, 1]: the set of
continuous functions from x = 0 to x = 1.
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Differential Operators

-“Differential Operators” are formulas of D, where Df ≡ f ′

-Example 1: (I + 2D2)f = f + 2f ′′, (I + 2D2)2f = f + 4f ′′+ 4f ′′′′

-Example 2: eDf(x) = (I +D + D2

2 + D3

6 + . . . )f(x) = f(x+ 1)

-What about making infinite lists with a differential operator
T : {Tf, T 2f, T 3f, . . . }

-If this list is dense, then f is a hypercyclic function for the
operator T
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Brief Sketch of MacLane’s Theorem

Weierstrass Approximation Theorem
There exists a countably infinite set of polynomials {p1, p2, p3, . . . }
that is dense in C[0, 1].

-Define the integration operator A: Af =
x∫

0

f(t)dt.

-A is a right inverse of D: DAf = f

-Important note: Anxm = m!xm+n

(m+n)!

f = Ap1 +An2p2 +An3p3 + · · ·+Anipi + . . .
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Project Goal: Extension of MacLane’s Theorem

-Like MacLane’s Theorem, except:

-Replace D with any differential operator T

-Make f a complex function

-Make f an infinite product of linear functions:

f(z) =
∞∏

j=1

(
1− z
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Finding Inverse of Operator T

Let T =
∞∑

i=0
aiD

i = ψ(D)

-When T operates on finite polynomial p with degree m, ∞ can be
replaced with m , and T can be written as

Tp = a0D
l
(
I − D

r1

)(
I − D

r2

)
· · ·
(
I − D

rm−l

)
p

-Note that(
I − D

r

)(
I + D

r
+ D2

r2 + · · ·+ Dm

rm

)
=
(
I − Dm+1

rm+1
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Finding Inverse of Operator T (continued)

Tp = a0D
l
(
I − D

r1

)(
I − D

r2

)
· · ·
(
I − D

rm−l

)
p

A set of operators Sn, acting on finite polynomial p, can be
defined such that TnSnp = p.

-If l > 0, then the integral factor takes over, and Snp→ 0 as
n→∞.

-If l = 0, Snp 6→ 0.
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Constructing f as a Product

-Construct fk =
k∏

j=1
(1 + qj), let f = lim

k→∞
fk

-Find polynomials q1, q2, . . . , and integers n1, n2, . . . such that
qj → 0 as j →∞, and

Tnk(fk) ≈ pk =⇒ Tnk(fk−1(1 + qk)) ≈ pk

Find functions qn such that, for any fk−1 and pk as n→∞ :

qn → 0 (1)
Tn(fk−1(1 + qn))→ pk (2)
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Tackling the “Big Theorem”: Three Cases

T = ψ(D), where ψ(z) =
∞∑

i=0
aiz

i

Case 1: T = ψ(D), where ψ(0) = 0

Case 2: T = ψ(D), where ψ(0) 6= 0, though ψ(r) = 0 for some r

Case 3: T = ψ(D), where ψ(z) has no roots
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Case 1: T = ψ(D), ψ(0) = 0

In this case, the Tn operator has an inverse Sn such that
Snpk → 0 as n→∞.

To search for a possible function qn, start with condition 2:

Tn(fk−1(qn + 1)) = Tn(fk−1qn) + Tn(fk−1) ≈ pk(z)

For a big enough n, Tn, which includes a “factor” of D, will bring
fk−1 to 0 when operated on. Therefore condition 2 becomes

Tn(fk−1(qn)) ≈ pk(z) =⇒ fk−1qn ≈ Snpk

Set qn to equal quotient polynomial of Snpk and fk−1.
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Case 2: T = ψ(D), ψ(r) = 0, r 6= 0

-Biggest difference: Snpk 6→ 0

T = ψ(D) has a “factor” of (I −D/r). By the chain rule, for any
polynomial g(z),

(I −D/r)(g ∗ erz) = g ∗ erz − 1
r
erzDg − 1

r
rerzg = −1

r
erzDg

Tn(fk−1(qn + 1)) ≈ Snpk =⇒ fk−1(qn + 1) ≈ Snpk + g ∗ erz

(qn + 1): quotient polynomial of

Snpk + (fk−1 − Snpk)
(

n−m−1∑
i=0

(−rz)i

i!

)( 4n∑
i=0

(rz)i

i!

)
and fk−1
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Case 3: T = ψ(D), ψ has no roots

ψ(z) = λeaz, a 6= 0.

When z is replaced with D, operator becomes the translation
operator:

ψ(D) : f(z)→ λf(z + a)
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The result is in sight . . . almost . . .

-We have f(z) =
∞∏

j=1
(1 + qj(z)). Product is not of linear factors

-One may split each (1 + qj) into linear factors which each also
tend to 1, but the new product may not converge.

-Could one reorder the roots of each (1 + qj) so that the product
converges? Yes, but it’s tricky

-Our goal revisited: Make {Tf, T 2f, T 3f, . . . } dense in the set of
differentiable complex functions
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